Machine Learning
Extra Information
Total Visitors : 26517
Visitors This Month : 26517
Last Modified : 03.01.2021

A C T I V I T I E S

Syllabus

  • Introduction:
    • Machine perception,
    • Recognition Cycle (sensing, segmentation, feature extraction, classification),
    • Teaching a computer to learn concepts using data
  • Classification Problem
    • Classifier Model
    • Features: Feature Selection and Extraction
    • Linear Classifiers (Linear Discrimination)
  • Learning from Data: Supervised vis-à-vis Unsupervised Learning
    • Statistical Learning
    • Working with Missing and Noisy Data
    • Bayesian Belief Networks
    • Parameter Estimation
    • Maximum Likelihood
    • Gaussian Parameter Estimation
    • Dimensionality Problem
  • Unsupervised Learning
    • K-Means Clustering
  • Decision Trees
    • Applications and Limitations
    • Optimizing Decision Trees
  • Neural Networks:
    • Biological Inspiration
    • Structure
    • Applications
    • Learning
    • Neural Network Types
      • Multi-layer Neural Networks
      • Hebbian Networks
      • Hopfield Network
  • Introduction to Deep Neural Networks
    • Convolutiona Neural Networks
    • Generative-Adverserial Networks
    • Auto-encoders
  • Generalization
    • Overfitting Problem
    • Early Stopping
    • Regularization
  • Support Vector Machines (SVM)
    • Linear SVM
    • Kernel-based SVM