Machine Learning
Syllabus
Extra Information
Total Visitors : 26517
Visitors This Month : 26517
Last Modified : 03.01.2021
A C T I V I T I E S
Total Visitors : 26517
Visitors This Month : 26517
Last Modified : 03.01.2021
Syllabus
- Introduction:
- Machine perception,
- Recognition Cycle (sensing, segmentation, feature extraction, classification),
- Teaching a computer to learn concepts using data
- Classification Problem
- Classifier Model
- Features: Feature Selection and Extraction
- Linear Classifiers (Linear Discrimination)
- Learning from Data: Supervised vis-à-vis Unsupervised Learning
- Statistical Learning
- Working with Missing and Noisy Data
- Bayesian Belief Networks
- Parameter Estimation
- Maximum Likelihood
- Gaussian Parameter Estimation
- Dimensionality Problem
- Unsupervised Learning
- K-Means Clustering
- Decision Trees
- Applications and Limitations
- Optimizing Decision Trees
- Neural Networks:
- Biological Inspiration
- Structure
- Applications
- Learning
- Neural Network Types
- Multi-layer Neural Networks
- Hebbian Networks
- Hopfield Network
- Introduction to Deep Neural Networks
- Convolutiona Neural Networks
- Generative-Adverserial Networks
- Auto-encoders
- Generalization
- Overfitting Problem
- Early Stopping
- Regularization
- Support Vector Machines (SVM)
- Linear SVM
- Kernel-based SVM