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1 Introduction

Support Vector Machines (SVMs) provide a learning technique useful in many
areas such as Pattern Recognition (PR), regression estimation etc. The so-
lution provided by SVMs for these problems is theoretically elegant, com-
putationally efficient and is seen to be very effective in many large practical
problems. The SVM approach grew out of some ideas from Statistical Learn-
ing Theory regarding controlling the generalization capabilities of learning
machines. In any PR problem one is concerned with the question: how well
does a classifier, designed or learnt based on certain finite training data,
would perform on new patterns/data. This question of generalization has
been addressed in many guises such as bias-variance tradeoff [1], overfitting
etc. The issue is one of striking the correct balance between the accuracy
obtained on a particular training set and the chosen ‘capacity’ of the learning
machine (or algorithm) which is, roughly, an indicator of the ability of the
machine to learn any arbitrary training set without error. Exploration of this
question, which forms a major part of statistical learning theory, gave rise
to the ideas of SVMs, which, arguably, offer an elegant way to effect proper
level of generalization.

This chapter explains SVMs mainly as a technique for learning good pat-
tern classifiers. The intent is to provide a tutorial introduction to SVMs
aimed at practitioners and researchers interested in the general area of pat-
tern recognition and regression. Sufficient details have been provided to help

*This material is published as a Chapter in J.C.Misra (Ed), ‘Computing and Informa-
tion Sciences: Recent Trends’, Narosa Publishing House, New Delhi, 2003.



a reader, with no background in this area, to implement the SVM method
on a PR problem. We start with a very brief overview of pattern recogni-
tion and then explain how one can use SVMs for this problem. It turns out
that the main computational problem underlying the SVM methodology is
the optimization of a quadratic cost function with linear constraints. We
describe one specialized algorithm for solving this problem in detail. We also
explain how these ideas can be used in regression and other related prob-
lems. As remarked earlier, the idea of SVM grew out of some results in
statistical learning theory. Hence, we briefly discuss a few related concepts
from statistical learning theory and explain why one can expect to get good
generalization performance with SVMs. To make the material accessible to
a large audience, we attempt to make the chapter largely self contained, and
hence, keep to a minimum discussion of issues that may need specialized
mathematical background.

2 Support Vector Machines for Pattern Clas-
sification

In this section we describe the SVM algorithm for 2-class Pattern Recogni-
tion (PR) problems. We begin with a brief introduction to PR and explain
the SVM method in the simplest case, namely, the case of linearly separa-
ble pattern classes. We then explain how this idea can be used for learning
general nonlinear discriminant functions.

2.1 The Pattern Recognition Problem

In a Pattern Recognition (PR) problem, the objective is to classify any given
input pattern into one of finitely many classes [2]. The nature of input
patterns as well as the classification labels to be output by the system de-
pend on the specific application. For example, in Optical Character Recogni-
tion (OCR) applications, the input pattern is a two dimensional (grey-scale)
image of a character symbol and the output label (also called the class label
or class) is the name (or some other representation) of the character present
in the image. In speech recognition systems, the input pattern is a (sampled
version of the) time-varying voltage signal from a microphone and the out-
put class label is the identity of the word (or any other speech units) that



compose the speech utterance. In a fingerprint based identity verification
system, input is the image of the fingerprint pattern of a person (along with
some other claim of identity such as a name) and the output class label is
binary specifying whether or not the person is who he claims to be. While
the first two examples represent multiclass problems, the last example is a
two class problem. The methodology of SVMs is applicable for the 2-class
PR problem. At the end of this subsection we indicate how we can tackle
multiclass problems.

A general PR system can be viewed as implementing a two step procedure:
feature extraction and classification. In the first step, the system extracts or
measures some salient characteristics, called features, from the input pattern.
In most cases the features are real numbers. Thus, though the input pattern
may be in some arbitrary representation (such as an image), after feature
extraction, each pattern is represented by a vector of real numbers, called
the feature vector. Now the classification step is to assign a class label to
each feature vector. Since we are considering only 2-class problems here, the
classifier is a function that maps the set of feature vectors to the set, say,
{=1,+1}. Any such function is called a decision rule. A good classifier or
a decision rule is one that maps a feature vector to a class label that most
often corresponds to the true class that the pattern represented by the feature
vector belongs to. The feature extraction step is very much problem specific.
For example, the features that we would like to measure from a fingerprint
image so as to be able to make the correct identification decision would, in
general, be different from those needed for correctly identifying a character
from the image of a printed page. However, after fixing the set of features,
design of a classifier admits some general procedures.

A general structure for a pattern classifier, that is relevant for our dis-
cussion of SVMs, is that of a discriminant function. Such a classifier or a
decision rule can be specified as

If g(W,z) > 0 then decide z € Class ‘+1’
Else decide z € Class ‘-1’

where g(+, ) is called a discriminant function, W is a parameter vector and x
is the feature vector.! Having chosen the form of a discriminant function, the

'We always use x to denote feature vector and use subscripts when we want to denote
different feature vectors. We make no distinction (such as boldface etc.) between vector
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problem of obtaining a ‘good’ classifier is that of finding an ‘optimal’ value for
the parameter vector. A special case which is relevant here is that of a linear
discriminant function. Suppose the feature vector is n-dimensional. (That is,
x € R"). Then a linear discriminant function is given by g(w, b, t) = wlz+b.
Here, the parameters of the discriminant function consist of a vector w € R
and a scalar b € R.

In most PR problems, it is not possible to design a classifier (which is
required to map feature vectors to class labels) based on first principles.
In most cases, one is provided with a set of examples, called training set
or training patterns, of the form {(z;,v;), ¢ = 1,...,1l}. Here each z; is a
feature vector whose ‘true’ class is given by y;. Training samples are often
obtained by getting some random patterns and having them classified by
human experts. Now one can design a classifier by finding the values for
the parameters of a discriminant function so that all training patterns are
classified correctly (or with fewest errors). If one has statistically independent
and representative set of training samples, then one can hope that a classifier
that performs well on training set would also perform well on all the other
unseen patterns of interest in the application. (See section 4 for some more
discussion).

In a PR problem, the pattern classes are said to be linearly separable if
there exists a linear discriminant function that would classify any pattern
correctly. Thus, in a linearly separable case, there exist w* € R™ and b* €
R such that the linear discriminant function with these parameters would
classify all the training patterns correctly.

The methodology of SVMs offers an elegant and efficient technique for
obtaining or learning general nonlinear discriminant functions using a given
set of training patterns in a 2-class PR problem. The details are explained
in the subsections to follow.

Since an SVM can be used only in a 2-class problem, the next obvious
question is: how does one tackle a problem with, say, p classes? A simplest
way to do this is to learn p discriminant functions. Each such discriminant
function is trained to distinguish one of the classes from all others. After the
learning is complete, the system functions as follows. Given a new feature
vector, x, it is supplied to each of the discriminant functions. Then z is clas-

and scalar symbols. The distinction would be obvious from context. All vectors are column
vectors and a superscript T' denotes transpose.



sified as belonging to that class whose discriminant function has the highest
positive value on z. If none of the discriminant functions has a positive value
for the given value of x, then the system would reject x.

With this brief introduction to the PR problem we move on to the details
of the SVM method.

2.2 SVMs for Linearly Separable Classes

We are given a finite training sample of patterns, {(z;,v:),i = 1,...,1},
where z; € R" and y; € {—1,+1}, which is linearly separable. That is, we
are considering n-dimensional real feature vectors® and the two class labels
are denoted by +1 and —1. Since the pattern classes are linearly separable,
there exist w € R"™ and b € R, such that for i =1,...,1,

wlz; +b > 0, Vi such that y; = +1
wlz; +b < 0, Vi such that y; = —1. (1)

The hyperplane in " described by w, b that satisfies (1) is called a separating
hyperplane and is given by
w'r+b=0 (2)

Since the classes are linearly separable, we can assume that there exists a
separating hyperplane such that no training sample is on the hyperplane.
That is why both the inequalities in (1) are strict. Since there are only
finitely many samples, if w, b exist satisfying (1), then, by suitable scaling we
can find w, b that satisfy

wlz; +b > 1, Vi such that y; = +1
wlz; +b < —1, Vi such that y; = —1. (3)

The above set of inequalities can be written more compactly as
yilw 'z, + b0 > 1, i=1,...,1 (4)

Since the classes are linearly separable, there exist infinitely many separating
hyperplanes. Figure 1 shows an example of two different separating hyper-
planes. The hyperplane shown in fig. 1(b) is intuitively a ‘better’ separating

2In the sequel we use the terms feature vector and pattern vector interchangeably
whenever there is no scope for confusion



hyperplane. This is because for this hyperplane the distance to the nearest
pattern on either side is more and hence (intuitively) it can result in better
generalization. We formalize this notion below.

For ensuring proper generalization, a central notion in SVM method is
the concept of optimal hyperplane. If w,b satisfy (4), then our separating
hyperplane is such that there is no training sample between the two parallel
hyperplanes specified by w’z+b =1 and wTz+b = —1. We call the distance
between these two hyperplanes as the margin (of separation) of the separating
hyperplane. The (perpendicular) distance between a point on the hyperplane

w’z +b =1 and the hyperplane w'z + b = 0 is 1/||w||. Thus the margin

2
Hw”' . . . . .

separates the training patterns. Fig. 2 shows these notions schematically.

is The margin is a good measure of how well a separating hyperplane

We define the optimal hyperplane to be the separating hyperplane with
maximum margin. There is another way of looking at maximizing the margin.
If we start with a separating hyperplane that satisfies (1) and scale w, b just
enough to satisfy (4) then the training pattern closest to the separating
hyperplane would be at a distance of 1/||w|| from it.

The w*, b* corresponding to the optimal hyperplane constitute the SVM,
which is our solution to the classification problem. The classification of any
pattern vector, z, is now determined by the sign of z7w* + b*.3

To maximize the margin we need to minimize w”w. Hence the optimal
hyperplane is a solution of the following constrained optimization problem.

1
min EwTw
subject to yilwlz; +0] > 1,i=1,...,L (5)

It may be noted here that the variables for the optimization are w, b.
The Lagrangian* for this problem is

1 l
L(w, b, p) = inw + > i [1=yi(w"z; + b)) (6)
i=1

where p = [p1 ... )" € R and p; are the Lagrange multipliers.

3We can also decide to reject any = (that is, assign no classification to it) if |27 w* +b*| <
1. This can sometimes improve the classification accuracy on new patterns (at the cost of
rejecting a few patterns).

“To make this part self-contained, a few results from optimization theory that are
needed are stated in the Appendix
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Figure 1: Examples of separating hyperplanes. The one in (b) is intuitively
a ‘better’ separating hyperplane



W 2
m——
: Wl
] @C|a552
= wix+b=1
I /V
Class 1
o T _
wix4b=—1 wx+b=0

Figure 2: Margin of a separating hyperplane.

Since (5) is an optimization problem with quadratic cost function and
linear constraints, w*,b* is a global solution of (5) if and only if there exist
i, i =1,...,1, satisfying (see Theorem 1 in appendix)

1
Vo L =w* — Z wiyix; = 0 (7)
i=1
oL <

=2 MY = 0 (8)

o~ &
1— yz(szw* +b") < 0, Vi, 9)
/J,;k > 0 (10)
pi[l — yz-(:viTw* +b")] = 0, Vi, (11)

Conditions (7)-(11) are the Kuhn-Tucker conditions for problem (5). From
(7) we see that the optimal hyperplane is a linear combination of training
patterns. By (11), we must have p} = 0 if y;(z] w* + b*) > 1. Let us call
z; a support vector if y;(x] w* + b*) = 1. Let S denote the set of indices of
support vectors. Then, by (9) and (11), uf = 0if i € S. Now, from (7) we
get

w =Y pry. (12)

i€s
Support vectors are those training patterns for which, at the optimal
solution, the inequality constraints in (5) are satisfied by equality. Thus,
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these are the samples closest to the separating hyperplane and hence, in a
sense, are the most difficult patterns to classify. The optimal hyperplane is
a linear combination of these support vectors and hence the name SVM for
the method. Fig. 3 illustrates the optimal hyperplane and support vectors
in an example.

If we can determine the optimal Langrange multipliers p; then we get
w* using (7) or equivalently (12). (While using (12), since we do not know
support vectors a priori, we let the summation run over all 7 such that p; > 0.
In general, we can have u; = 0 even when ¢ € S. However, this does not
alter the w* given by (12). Hence, from now on we think of support vectors
as those corresponding to nonzero y;). We can also determine b* as follows.
Pick any 4 such that pf > 0. Then, by (11), we must have y;(z7w* +b*) = 1
and hence

b =y — xt w (13)

because y? = 1.5

To find pf we will solve the dual of (5). We will use the formulation
described in the appendix. In this notation, the dual function for (5) is given
by

!
q(p) = infy,p L(w, b, p) = inf, {%wTw + 3 will — yi(w Tz + b))} (14)
i=1

While finding infimum over b € R, it is clear that ¢(u) would be —oo unless
we have > p;y; = 0. Since we need to maximize ¢, we would use this
condition as a constraint. To find infimum with respect to w € R", we need
to solve V,, L = 0 which is given by (7). Thus we get the infimum in (14) by
substituting for w from (7) and taking Y p;y; = 0. This gives us the dual of
(5) as

l !
max Q(M) = Z i — 2 Z /LiﬂjyiijiTﬂfj
i=1 ij=1

subject to i >0, Vi

l
> wiyi =0 (15)
=1

5In practice, we would be using some numerical optimization technique for obtaining
the p}’s. Hence, to take care of numerical errors, we may determine b* as the average of
the values given by (13) for all ¢ such that u} > 0.

9
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Figure 3: Example of optimal hyperplane and support vectors. The (a) part
shows a non-optimal separating hyperplane. The (b) part shows the optimal
hyperplane for the same data. Here the examples shown in dark are the
support vectors.
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Here the optimization is over p € R!, where [ is the number of training
patterns. We note that in the dual problem, the training patterns appear
only as inner products. The dual, given by (15), is once again an optimization
problem with quadratic cost function and linear constraints.

From Theorem 2 in the appendix, w*, b* is a solution of the primal prob-
lem given by (5) and p* is a solution of the dual given by (15) if and only if
the following are satisfied.

o Cl. pj >0, ¥ yip; = 0.

o C2. w* =Y, plyiw;, and b* = y; — 7 w* for 7 such that p} > 0.
o C3. yi(zTw* +0v*) > 1

e C4. p; > 0 implies y;(zfw* +b*) = 1.

Thus in solving (15) we want to find p* € R! such that pf > 0, 3 py; = 0
(that is, p* is feasible for (15) ) and further

pi=0 = ylafw +b>1
g >0 = ylajw +b7=1 (16)

Then with w*, b* as given by C2, we see that all conditions C1-C4 are satis-
fied. Thus the conditions given by (16) constitute the optimality conditions
for checking whether a given feasible p is optimal for (15). The interesting
thing about these optimality conditions is that we can check for optimality
of each component of u using the corresponding sample pattern. We will
discuss an algorithm for solving (15) in Section 3.

2.3 SVMs — Linearly Nonseparable case

Suppose the given training patterns are not linearly separable. Then we
cannot find the optimal hyperplane because the optimization problem (5)
has no feasible solution. In such a situation we can modify our objective by
seeking a hyperplane to minimize errors. For this we modify our optimization
problem as follows.

1 l
min inw +C E &
i=1

subject to yilwTe; +0) >1— &, i=1,...,1
§>0,i=1,...,L (17)

11



Class 2
N
N = '
m WTX-I—b=1
Class 1 WTX +b6=0
wix+b=-1

Figure 4: Illustration of slack variables and margin violations. For the hy-
perplane shown, we would have both & > 0 and &; > 0. Of the two samples,
only z; would be misclassified by this hyperplane.

Here &, i =1,...,1 are positive (so called) slack variables and the optimiza-
tion is over w, b, ;. Suppose w*,b*, & are the optimal values of variables
for the above problem. Then, the classification of a new pattern x would
be determined, as earlier, by sign of z7w* + b*. Thus & > 0 implies that
the optimal hyperplane (that is, the solution of (17) ) is not able to separate
training patterns as demanded by (4). Further, if £ > 1 then we are actually
making an error in classifying the training pattern z;. This is illustrated in
fig. 4.

Thus, Y & is a good measure of the error made and C', which is a
parameter to be chosen by the user, controls how much error we can tolerate.
High value of C' would correspond to high penalty for errors. (We always
take C' > 0). (It may be noted that the optimization problem given by (5)
is essentially a limiting case as C' — o0). Since we make errors only when
& > 1, (X &)F for any positive integer k is a good penalty term. Using
such a penalty would result in a convex optimization problem for any k.
For k = 1,2, we would get a quadratic optimization problem. In (17) we
have chosen £ = 1. The advantage is that, in this case, neither &; nor the
corresponding Lagrange multipliers appear in the dual of (17). The dual

12



function for (17) is given by (see Appendix)

1 !
q(p, A) = infy e {EwTw—i—C’(z —i—z il =& —yi(w” z; +b)] Z X&'}

=1 i=1
(18)
where \; are the Lagrange multipliers corresponding to the constraints —¢&; <
0. As earlier, we would need Y u;y; = 0 to ensure that the infimum is not
—o00. Similarly, we get a term Y (C' — \; — ;)& and hence we need to ensure
C = M\ + p;, Vi. Using these and taking infimum with respect to w by
substituting w = > py;z;, we get the dual of (17) as

o~

max =D M= Z Pl YiYiT; T
i=1 2,j=1

subject to 0<u; <C, Vi

!
> iy =0 (19)
im1

The only difference between the two optimization problems given by (15)
and (19) is that u; are bounded from both sides.® Thus by the nature of the
penalty term we employed, we get essentially the same optimization problem
to solve even when patterns are not linearly separable. The Kuhn-Tucker
conditions for (17) are the following.

o Kl. w— ZZ 1 MYz = 0.

o K2. Ez 1 iy = 0.

e K3. C—pu; — Ny =0.

e K4. 1 — & — ys(wTx; +b) <0.

e K5. & >0,y >0, \; >0, Va.

o K6. u;[1 — & — yi(whz; +b)] =0, Vi.

6Since \; do not appear explicitly in the dual function, all we need to ensure regarding
them is A; > 0 and A; + pu; = C. So, if we ensure 0 < p; < C then by taking A; = C — y;
we can satisfy all constraints on ;. This is the reason for the upper bound on u;.
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If y; = 0 then by K3, A\; > 0 and hence by K7 & = 0. Now, by K4,
yi(wTz; +b) > 1. If 0 < p; < C then )\; > 0 and hence, by K7 and K6,
yi(wlz; +b) = 1. If y; = C then by K4 and K6, y;(wTz; +b) =1 - & <
1. Putting all this together, as in the previous subsection, we can derive
conditions for y} to be a solution of (19) as follows:

l
0< i <C, and Y iy =0 (20)

=1

and

pi=0 = ylojw +6]>1
0<p;<C = ylrjw +b]=1
pi=C = yzjw +b7<1 (21)

where w*, b*, which will be solution to the primal problem given by (17),
are given by w* = Y\ wiuiz; and b* = Yj — x]Tw* for some j such that
0<p;<C.

Thus in the case where the given pattern vectors are not linearly sep-
arable, the SVM is obtained by solving (19) (for which the conditions for
checking optimality are given by (21) ) which is the dual of (17). This so-
lution is the ‘best’ linear discriminant function in the sense that (depending
on C) it gives a hyperplane with ‘least’ error on the training set. However,
in many applications, this error may be unacceptably high. In such cases we
need to find a suitable nonlinear discriminant function which is explained in
the next subsection.

2.4 Nonlinear SVMs

There is another way of viewing pattern sets that are not linearly separable.
Suppose we transform the given pattern vectors as z; = ¢(x;) where ¢ :
R™ — H is some nonlinear function. We assume H to be some space on
which an inner product is defined. (Generally we take H = R™ with m >
n). We may be able to find a suitable ¢ such that the resulting vectors z;
may be linearly separable in H even though the original patterns x; are not
linearly separable in R". For example if n = 2 and x; are separable only
by a quadratic discriminant function, then, if we use ¢ : 2 — R with
d(v1,v9) = [v1 vy v? v2 vywy]T, the resulting z; would be linearly separable.

14
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Figure 5: Example of a non-separable data set in one dimensional feature
space. By transforming the patterns into R?, we get linear separability.

Thus finding a quadratic discriminant function with the original training set
is the same as finding a linear discriminant function with the transformed
training set. In figs. 5, 6 and 7 we show some examples of this notion of
transforming the patterns into some other space so that the classes become
linearly separable.

However, this, by itself, is not very attractive for two reasons. The first
reason is that, this naive method would be computationally very expensive.
Suppose z; € R". If we want to find a discriminant function that is a p*?
degree polynomial in this space, then, to use the above idea, we have to
employ a ¢ function whose range space would have dimension of the order
of nP. Computing all the z;, computing inner products in such a high di-
mensional space etc. would all be computationally expensive. The second
reason why this method is not attractive is that, the learnt hyperplane in
the high dimensional space may have poor generalization abilities. To learn
a hyperplane in n-dimensional space needs learning n + 1 parameters from
the given samples. Hence, we should expect that we need correspondingly
larger number of sample patterns as the dimension of the space becomes
larger. (See Section 4 for further discussion of this issue). The attractiveness
of SVM methodology is that it is able to address both these problems in an
effective manner. In this subsection we explain how we are able to get around
the problem of computational inefficiency even though we effectively find an
optimal hyperplane in a very high dimensional space in this manner.

15
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Figure 6: Example of a non-separable data set in ®2: the XOR problem. By
transforming the patterns into R*, we get linear separability.

We can obtain the optimal hyperplane for the transformed training set,
{(2i,vi), 1 =1,...,1}, by solving (15) with z; replaced by z;. Thus the new
optimization problem (in the dual formulation) now is:

l l
max Q(M) = Z i — B Z Mz’ﬂjyiijiTZj

i=1 ij=1
subject to wi >0, Vi

!
> piyi =0 (22)
im1

We note that we could have used the formulation of Section 2.3 and then the
only difference to (22) is that the nonnegativity constraint on y; is replaced
by 0 < u; < C (see (19) ). Because of the fact that the (transformed)
pattern vectors appear only as an inner product in the objective function, it
turns out (as explained below) that we can solve (22) without ever explicitly
calculating z;.

Define a function K : R" xR — R by K (z;,x;) = ¢(x;)" ¢(x;). This will
be called a kernel function. If we have a suitable kernel function (which is
much less expensive to compute than ¢(z;)” ¢(z;)) then we need not explicitly
calculate z; because we can substitute K (x;, ;) for 2 z; in (22). This may not
appear to be significant because the w* of the optimal hyperplane obtained
by solving (22) will be in space . However, we do not need to explicitly

16



(b)

Figure 7: Another example of transforming the patterns for getting linear
separability. Part (a) shows the data (in :2) where one class is inside a circle
and another is outside. We need a quadratic function to separate the two
classes. Part (b) shows a suitably transformed data that is linearly separable.
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know w* either. The remarkable feature of the SVM method is that by the
use of kernel functions we can completely avoid the need for working in the
range space of ¢.

As we have seen, the optimal hyperplane is a linear combination of sup-
port vectors. Let S = {i : uf > 0} denote the indices of strictly positive
Lagrange multipliers. Then we have w* = > ;c5 #iv;2;. Now to find the
classification of any new pattern vector, x, we need to calculate f(z) =
d(z)"w* +b* = ¥ pryid(z;)"¢(z) + b*. We know that b* = y; — ¢(x;) w*,
for some j such that 0 < uf < C. Thus we can calculate f(z) as

fl@) =2 wyiK (wi, o) +y; — 3 iyl (wi, ). (23)
i€S i€S
The classification of z would be +1 if f(z) > 0 and it will be —1 otherwise.
Hence, all we need for learning the nonlinear SVM is to solve the optimization
problem given by (22) with 2! z; substituted by K (z;, ;). (It may be noted
that the optimization in (22) is over R irrespective of the dimension of #).
Once we obtain the optimal Lagrange multipliers, pf, 7« = 1,...,[, we can
completely specify the SVM by the nonzero Lagrange multipliers and their
corresponding training patters. Given this, we can decide on the classification
of any new pattern using (23). Thus, by the use of kernel functions we can
effectively find the separating hyperplane in the high dimensional H (which
is the range space of ¢) without having to compute either z; = ¢(x;) or w
which are in 4. This would mean that H can even be infinite dimensional!
How do we choose kernel functions? The function K(-,-) should be such
that there is a vector space H and a ¢ : " — H such that K(xz;,z;) =
é(z;) (). A simple example is K (x;,z;) = (2] x;)?. Suppose n = 2. We
can choose H = R and a ¢ : R2 — R° as é(a,b) = [a®> V2ab 0?]". Now
let U = [u; ug]? and V = [v; vy]? be two vectors in R2. Then we have
S(U)TP(V) = u2v? + 2uyuguivg + udvs = (UTV)?2 = K(U,V). It is easy
to see that for a given kernel function neither the choice of H nor that of
¢ is unique. In this example, we could have used ¢ : ®2 — R* given by
#(a,b) = [a® ab ab b?]". However, we need the space H to be endowed with
an inner product.
The necessary and sufficient condition for a kernel function to have the
required property is given by the so called Mercer’s theorem.

Mercer’s Theorem: Given a function K : R* x " — R, there ex-
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ists a mapping ¢ and an expansion K (1, 73) = ¢(z1)T ¢(x) if and
only if for every real valued function g on R" with [ g(z)? dz < oo,
we have

/K(ml,xQ) 9(x1) g(x2) dzy dzy > 0.

We can easily verify that this condition is satisfied by the kernel function
KU, V)= (UTV) where U = [u; ... u,)T € R, V =[v1...v,)T € R" and p
is a positive integer. We need to show that

n

[ iy g(U) g(v) U av >0 (24)

=1

The typical term in the multinomial expansion of (3 wu;v;)? contributes a
term of the form

p! / T T T T
tl?ooovthr o0 g(U) g(V) dU dV
rlrl . .(p—r1—...)! U1t Y1 b2 9(U) g(V)

to the LHS of (24). This term factorises as

p' / ri,,T 2
Uy ... >
rlrel . c(p—1r1 —..)! () wi'uz 9(U) dU)” 2 0

From the above, it is clear that any kernel of the form K(z1,z9) =
p0
convergent, satisfies the Mercer’s condition. A special case of this is

¢p (x729)? where ¢, > 0 are real coefficients and the series is uniformly

Ky(w1,79) = (1 + 2T 20)? = 1+ p(aT o) + ... + (27 22)P. (25)

This is one of the standard kernels used and is called the polynomial kernel

with degree p. This results in a nonlinear SVM that represents separating

surface given by a polynomial of degree p in the original pattern space.
Another kernel that is popular in applications is the Gaussian kernel

defined by
—(:cl - .TQ)T(.Z‘1 - .’Ez)
Kg(z1,29) = exp ( 507 ) (26)
By writing exp[—(z; — 72)T(z1 — 12)] = exp[—zT z;]exp[—xT xs]exp[2zT x,]
and then using exp[2z] o] = 300 (227 22)? /p!, we can easily show that this

kernel also satisfies the Mercer condition.
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A nonlinear SVM with a Gaussian kernel results in a classifier that is
structurally equivalent to a Radial Basis Function (RBF) network. To see
this, recall that with a nonlinear SVM, the classification of a new pattern is
determined by the sign of f(x) given by (23). With a Gaussian kernel we
have

fl@) =3 miyiexp <M> +b (27)

2
i€s 20

where z; are the support vectors. It is easily seen that f(x) given by (27) is
the output of RBF network having Gaussian basis functions with centers z;,
widths o and the weights into the linear output neuron being pu;y; and the
bias of the output neuron being 6. With an RBF network, learning centers
is a very difficult problem. The SVM method offers an elegant solution to
this and the centers turn out to be the support vectors.

Now we can sum up the complete SVM method as follows. Given the
training set of patterns {(z;,v;), ¢ = 1,...l}, we need to solve the opti-
mization problem specified by (22) with 2! z; replaced by K (z;, z;) for some
suitable kernel function. After obtaining p;, ¢ = 1,...,(, the SVM is com-
pletely specified by the nonzero Lagrange multipliers and the corresponding
training patterns. Given any new pattern z, its classification is determined
by the sign of f(z) given by (23). If, with the chosen kernel function, we
are not sure of perfect separation even in the new high dimensional feature
space, then we can use the technique of Section 2.3 with a suitable penaliz-
ing constant C. The only difference in the optimization problem is that the
bound constraints on p; would now be 0 < p; < C. It is easy to see that the
optimality conditions given by (21) are expressible in terms of f(z;).

3 The Optimization Problem

Learning an SVM involves the following. We are given a training sample
{(zs,9:), i =1,...,1}. We need to find y; for solving the following optimiza-
tion problem.

! !
1
max g(p) =3 =g D YK (v )
i—1 ij=1
subject to 0<u; <C, i=1,...,1,
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!
> wiyi =0 (28)
im1

The conditions for optimality for the above problem can be stated as

pi=0 = yif(zi) >1
0<p;<C = yif(r;)=1
pi=C = yif(r:) <1 (29)
where f(x) is given by
f@) =" wyiK(zi,z) +b. (30)
i€S
Here, S = {i : p; > 0} and b is given by
b=y; — > gk (i, ;) (31)

1€S

for some j such that 0 < pu; < C. Our optimization problem is over '
where [ is the number of training examples. Each Lagrange multiplier, y;, is
associated with an example, (x;,y;). The structure of the optimality condi-
tions given by (29) is such that we can talk about different y; (or different
examples) violating optimality conditions.

The problem specified by (28) is a quadratic programming (QP) problem
with bound constraints on variables and one equality constraint. However,
using any standard QP technique directly may be inefficient. The objective
function of (28) is q(u) = p'e — su"Hp where e is vector all of whose
components equal 1 and H is a [ x | matrix with (i,7)" element H;; =
viy; K (25, 2;). Since [ is generally large, even evaluating the quadratic form
at each iteration may be expensive. There are some efficient ways of solving
this QP problem that exploit the special characteristics of this problem.

3.1 Sequential Minimal Optimization

The main idea of the SVM method is that while the number of examples may
be large, the number of support vectors would be small. Thus we expect that
the optimal value of a large number of y; would be zero. The QP problem of
SVM involves the quadratic form of a matrix with {2 elements. However, the

21



quadratic form is unchanged if we remove rows and columns of the matrix
H that correspond to zero Lagrange multipliers. This gives rise to the idea
of ‘chunking’. Chunking based algorithms solve a series of QP subproblems
as follows. At each iteration we solve a QP subproblem that includes all
nonzero Lagrange multipliers of the previous iteration plus some M more y;
that correspond to the ‘worst’ violators of the optimality conditions (29), for
some fixed M. (If there are fewer than M violators, all of them are included).
The size of these QP subproblems may both grow and shrink as the iterations
proceed and in the last iteration the size of the QP subproblem would be
same as the number of support vectors. Even chunking may involve solving
large QP problems in some iterations. A further simplification is possible by
choosing a fixed size for each subproblem. Here at each iteration we select,
say, M (or fewer) number of y; for optimization based on which p; violate
(29). Each of the subproblems would be solved using a standard numerical
method for QP. As long as, at each iteration we include at least one y;
that violates (29), and each step improves the overall objective function and
maintains the feasibility of all y; at all iterations, this process of solving a
series of QP subproblems will converge to the optimal solution.

Sequential minimal optimization (SMO) is a technique based on this idea
of solving a series of fixed size QP subproblems. Here each QP subproblem
involves only two variables. This is the smallest size for the subproblem
because we need to maintain the overall feasibility of all y; at each step and
the u; have to satisfy an equality constraint. Since a two variable QP problem
can be solved analytically, at each iteration we can update the variables using
the analytically derived equations (rather than using a numerical routine)
which makes the method very fast. SMO algorithm uses some heuristics
to select the two Lagrange multipliers to be optimized at each iteration so
that the overall objective function is improved and the feasibility of all u; is
maintained. The overall algorithm turns out to be very simple to program
and is seen to be very efficient in applications.

Each iteration of the SMO algorithm contains two main computations:
selection of the two Lagrange multipliers and updating their values using an-
alytically derived equations for solving a two variable constrained QP prob-
lem. We first derive the expressions for updating the two chosen Lagrange
multipliers. To keep the notation simple, we will refer to the two Lagrange
multipliers selected for optimization as py and po. Let K;; = K(zi, ;).
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(The values of K;; do not change during the algorithm and hence they can
be computed beforehand and stored. Also note that K;; = Kj;). While de-
scribing the algorithm, we will distinguish between the old and new values
of Lagrange multipliers by using a superscript as appropriate.

For maintaining the feasibility of solution, we need to ensure Y p; y; =0
at all times. Hence we must have (note that we are changing only p; and ps)

old old new

Py + ps e = pyy + s ys. (32)

Since y1, 92 € {+1, —1}, we can rewrite the above as

old old new new

Myt Yely = By Y2ty =Y, Say. (33)

To maintain feasibility of u;’s after updating uq, o, we should ensure that
wrev s phe? satisfy (33) and also satisfy 0 < ppe?, puie” < C. With a little
algebra, this implies that we should satisfy

L<py®™ <H, and pi® =~ —yiyppp® (34)
where L, H,~y are given by:

If y; # 9y, then

L = max(0, pg — g

H = min(C, C+pg — u)

o= pdt— g (35)

If y; = y, then
L = max(0, g+ pf" = C)
H = min(C, u + )
vo= g s (36)
Now our task is to find values for ufe”, u5e*, that satisfy (34) with L, H,~y
given by (35) or (36), such that we maximize ¢(u) with respect to the chosen

variables. Since, uj;,j = 3,...,1 are left unchanged, ¢ is to be viewed as a
function of two variables only. With a little abuse of notation we use the
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same symbol ¢ for all such functions. By simple algebraic manipulations, we
can write ¢ as a function of puq, ys as

1 1
q(p, p2) = M1+M2—§Klllﬁ—§K22M3—8K12M1M2—M1y101—M2y2’02+Wc (37)

where K;; = K(x;,;), S = t1y2, W is a term that depends only on p;, j =

3,....0 and v; = Y5 yufK;;, i = 1,2. By (34) we must have py =

v — sjo. Hence we can rewrite ¢ as a function of only us as
1 1
qlpe) = v+pe(l—s)— §K11(7 — sp12)? — §K22M§ — sKiapa(y — spi2)
—y1v1(y — sp2) — yavopz + We (38)

To maximize q with respect to o we set dq/dus= 0 which gives (using s> =1
and y;18 = yo)

57(K1y — Kig) + ya(v1 —v2) + 1 =5 — o (K + Koy —2K15) =0 (39)

For the ¢ function to attain a maximum at a ps satisfying (39), we must have
the second derivative negative. Let n = d*q/du3, which is given by

n=—(Ku + Ko — 2K1). (40)

For now, let us assume 77 < 0. Writing, from (30), f%(z) = 3 p9"y; K (z;, z)+

b4 we can show that

v1— vy = [ a1) = [P (@2) +yops (K11 + Koo —2K12) + 417 (Ko — K ). (41)

From (39),(40) and (41), we see that g(us) attains a maximum at u), where

py = g - 2B =) (12)

where E; = fo(z;) —y;, i = 1,2. Now using (42) and (34), we get the

expressions for p7e", uz®" as

py = H if py > H
py if L <py<H
= L if yh<L
e = (g — ) (43)
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The SMO algorithm is an iterative algorithm that has two loops. The
outer loop chooses the first Lagrange multiplier, the inner one the second
Lagrange multiplier. Inside the two loops we compute new values of the
two selected Lagrange multipliers using (43). (For this we need to compute
L,H,~, E; etc.) Now to complete the algorithm we need to state how the
two Lagrange multipliers (referred to as 1, s above) are to be selected and
what to do if n given by (40) is nonnegative. Essentially any pair of La-
grange multipliers that currently violate the optimality conditions (given by
(29)) can be chosen as long as we ensure that all possible pairs would even-
tually be considered again and again. The SMO algorithm has a hierarchy
of heuristics to guide the choice of the two Lagrange multipliers which are
useful for improving the speed of convergence. We describe below a simple
set of choices. For this discussion, we say a Lagrange multiplier is bound if
its (current) value is either 0 or C; otherwise it is nonbound.

To choose the first Lagrange multiplier, in the outer loop we go over all
the Lagrange multipliers till we find one for which the optimality conditions
given by (29) are violated. (If we cannot find such a Lagrange multiplier then
we have the optimal y;’s and hence the desired SVM). What is normally done
is to loop through all the p;’s for the first time. Then we keep looping through
only the nonbound Lagrange multipliers. If at some iteration we cannot find
a nonbound multiplier that violates the optimality conditions, then we loop
through all i;’s one more time and so on. Choosing the first multiplier fixes
E; in (42). Now, in the inner loop we select the second multiplier (which is
also one that does not currently satisfy the optimality conditions) such that
E; — E, is maximized. For this chosen pair, if n given by (40) is negative
then we can proceed and update the values as given by (43). Even if 7 is
nonnegative we can often make progress with the chosen pair. Note that
the constraints given by (34) specify a line in the pu;—uo space as the feasible
region. So, if 1 is nonnegative we calculate the value of ¢ at the two ends
of this line segment and if these two are not same we take p7e", u3v to
be the values corresponding to the end point of this line segment that has
larger value for ¢. If the value of ¢ at both end points is same then we leave
this second Lagrange multiplier and proceed with the inner loop for another
choice of the second multiplier. If no choice exits, then we change the choice
of first Lagrange multiplier by proceeding with the outer loop.

In the algorithm we need to keep checking for optimality conditions.
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While calculating expressions such as ) p,y;K;;, we should note that,
between successive iterations only two of the p;’s would have their value
changed. Hence many caching type techniques can be used to get efficient
implementation. Another point to note is that the algorithm (43) does not
give us the new value of b even though it is needed for checking optimality
conditions. With a little algebra, we can derive the following equations for

new

getting the new value of b efficiently after obtaining p7¢” and p3°*. Suppose

new

u7e" is nonbound. Then b; given below would be the new value of b.

by = By + y1 (U7 — pd) K1y + yo (U5 — pg) Kra + 0% (44)

new

If ;5% is nonbound then by given below would be the new value for b.

by = Ep + y1 (07 — u9'") Kz + yo (a5 — pg*) Kap + b (45)

If both p?*” and p3Y are nonbound then b; and by would be the same. If
both u7” and p3®” are bound then all values between b; and by would be
consistent with the optimality conditions. In such a case the SMO algorithm
uses the average of the two.

In the SMO algorithm we need to check repeatedly for equality and in-
equality constraints. (For example, we need to check whether f(z;) =1 for
some x;, whether y; = C and so on.) For all such comparisons we need to
allow for some numerical error. Hence, we keep a parameter ¢ and assume
any constraint to be satisfied if it holds to within e. Too small a value of
€ would impair the quality of solution obtained while too large a value may
mean we go through a large number of iterations without really improving
the solution. Often, € in the range of 1072 to 10~% works well.

In many large empirical studies, this algorithm was found to be very
efficient. Since implementation of the algorithm is very simple, SMO is one
of the popular algorithms for learning SVMs.

3.1.1 Examples

In this subsection we illustrate the SVM method through two examples.
Ezample 1: In this example, the feature vectors are in R? and they are
drawn from a uniform distribution on [0, 4] x [0, 4]. Fig. 8 shows the training
sample of 2000 examples. All circles are of one class and stars are in the
other class. As is easy to see, the underlying class structure is a 4 x 4 checker
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board pattern. That is, the feature space consists of 16 squares on a 4 x 4
grid with adjacent squares being regions of opposite class. We have used
the SMO algorithm with Gaussian kernel function. The parameters used for
simulation are: 0=2.0 in the kernel function, e = 1072 in the SMO algorithm,
and C' = 5 in the objective function. The final SVM obtained gives 99.9%
accuracy on the training set and 99% accuracy on a separately generated test
set.

This example is meant only for illustration and hence the classification
accuracies per se are not important. However, the class boundary to be learnt
is highly nonlinear and hence the performance is impressive. What is more
interesting, however, is to look at the those training samples that turn out to
be support vectors. These are shown in Fig. 9. It is easy to see that only the
patterns that are closest to the separating surface between the classes turn
out to be the support vectors. As remarked earlier, the support vectors are
the most critical patterns for the classification task at hand. Identification
of such critical patterns is, so to say, a bonus from the SVM method.

Ezxample 2: As our second example, we discuss a realistic PR applica-
tion, namely, fingerprint classification. The results presented here are from
[19]. Finger prints are the characteristic structure of flow lines of ridges and
furrows that are present on the skin on one’s finger. It is well known that
finger prints are unique and are well suited for person identification. When
finger print image database is large (e.g., in application relating to law en-
forcement), it is desirable to have a systematic partitioning to reduce time
and complexity involved in finger print matching. Fingerprint classification
is one way of establishing such a partitioning. (The idea is that if we know
the class of the test fingerprint then it needs to be matched with only those
fingerprints in the database which are of the same class). As established
in literature, fingerprints are classified in six classes: Right loop (R), Left
loop (L), Arch (A), Tented arch (T), Scar (S), and Whorl (W). The catego-
rization of finger prints into these classes is based on the global shape of the
orientation field of ridge lines in the finger print image. In the example here
we use a 96-dimensional feature vector.”

"We first detect all the ridge lines along with orientations and then extract features
which essentially characterize the distribution of orientations of ridge lines around the
fingerprint image. For our purposes of illustrating the SVM method, the details of feature
extraction are not relevant.
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Figure 8: Training patterns in Example 1.
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We present results obtained on a fingerprint database from National In-
stitute of Standards and Technology, USA (NIST). The NIST database has
about 2700 finger print images of which only 5 are of class Scar. Also the
classes A and T together have only 133 examples. So, for our illustration
here we consider classifying a fingerprint into one of four classes: L, R, W, or
AT. (Here class AT stands for the combined set of Arch or Tented Arch). We
used four SVMs. Our first SVM is for separating class AT from L, R and W.
The remaining three SVMs are for distinguishing each of L, R, and W from
the other two. We used 1500 images from the database as training samples.
The specific images that constitute the training set are randomly selected. It
is observed that the classification accuracy is about the same with different
random choice of training sets.

In this example also we have used the SMO algorithm with a Gaussian
kernel function. As remarked earlier, learning an SVM involves solving a
quadratic programming problem, and hence the method is very efficient.
With 1500 training patterns, learning of each of the SVMs took about 2.2
seconds on a Pentium 300 MHz PC.

The accuracy obtained on the full NIST database using our classifier
consisting of the four SVMs is presented in Table 1 in the form of a confusion
matrix. Each row of the table shows the number of patterns of that class
from the database classified into different classes by our classifier. The last
column of the table gives the total number of patterns of that class in the
database. As can be seen, in some rows the sum of the first four columns is
not equal to the last column. This is because, as explained in Section 2.1, in a
multiclass classifier using SVMs, we reject a pattern if none of the SVMs give
positive output. However, for calculating the accuracy shown in the table,
we counted the rejected patterns also as errors. From Table 1, it is seen that
the final classification accuracy obtained is very good. (The performance is
also seen to be as good as or better than any other method on this database
[19]).

A simple classifier that is often used in applications is the so called nearest
neighbour classifier (NNC). In an NNC, we store some (or all) of the training
patterns as prototypes. Whenever a new pattern is to be classified we find
the prototype pattern (feature vector) that is closest to this pattern (feature
vector) and classify the new pattern into the same class as this nearest pro-
totype. We can, for example, use the Euclidean distance for deciding on the
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Class || L | R | W | AT || %Accuracy | Total patterns
L 801 | O 0 3 99.6 804
R 0 | 688 0 16 | 93.6 735
W 0 2 1998 0 97.6 1023
AT 2 0 0 | 129 97.0 133

Table 1: Confusion matrix with SVMs

Class || L | R | W | AT || %Accuracy
0
0

L 804 | 0 0 | 100
R 0 | 735 0 | 100
W 6 7 11009 | 1 | 98.63
AT 3 7 0 123 || 92.48

Table 2: Confusion matrix for Nearest Neighbour classifier — all training
samples as prototypes.

nearest prototype.

To illustrate the role played by support vectors here, we show in Ta-
ble 2 the results obtained with an NNC classifier where we used all the 1500
training patterns as prototypes. As can be seen, the accuracy of the SVM
classifier is as good as that with the nearest neighbour classifier. In this
example, for all the four SVMs together we had about 90 distinct patterns
as support vectors. Thus, the SVM classifier needs to store only about 90
patterns rather than the 1500 needed for the NNC.

There is another way of appreciating the fact that support vectors are
the most important patterns in the training set. Table 3 shows the accuracy
obtained with a NNC classifier if we had used the support vectors as the
prototypes. As can be seen, this NNC performs as well as the NNC that
uses all the 1500 samples as prototypes. For comparison, Table 4 shows the
accuracy obtained when we use 100 randomly selected training patterns as
prototypes. As is easily seen, the performance is quite poor. As illustrated
here, in many applications, the support vectors themselves constitute a very
useful output from the SVM method.
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Class || L | R | W | AT || %Accuracy
L 804 | 0 0 0 100

R 0 | 745 0 0 100

W 3 8 (1011 ] 1 98.83

AT 3 4 0 126 || 94.7

Table 3: Confusion matrix for Nearest Neighbour classifier — support vectors
as prototypes.

Class || L | R | W | AT || %Accuracy
L 7321 0 0 72 || 91.04

R 0 | 678 0 57 || 92.2

W 38 | 93 | 892 | 0 || 87.2

AT 14 | 33 | 17 | 69 || 51.9

Table 4: Confusion matrix for Nearest Neighbour classifier — 100 random
examples as prototypes.

3.2 Other Methods for solving the Optimization Prob-
lem

There are many other specialized methods for solving the optimization prob-
lem given by (28). We briefly mention two such ideas below.

Let S; denote the convex hull of all training patterns belonging to class
+1 and let S5 denote the convex hull of training patterns belonging to class
—1. Let z € Sy and 2’ € Sy be such that d(z,2") < d(z,2)Vz € Sy, 2 € Sy
where d(x,z') is the distance between the two vectors. It is easy to show
that the optimal separating hyperplane is the perpendicular bisector of the
line joining = and z’. (We assume here that S; and Sy are disjoint so that
a separating hyperplane exists). There are efficient techniques for finding a
point from a convex set that is closest to another convex set. These can be
adopted to find the SVM and this method is seen to be more efficient than
SMO [11].

Another interesting idea is the following. Suppose we change the primal
objective function from 0.5wTw+CY & to 05wTw+CY &+ b2 .
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That is, in addition to the margin we are including the bias or location of the
hyperplane also. The main advantage of this change is that the new dual will
have only bound constraints on the variables (i.e., 0 < p; < C) and it will
not have any equality constraints. Then the dual can be efficiently solved
using a gradient projection type algorithm which essentially involves iterative
solution of a set of linear equations with bounds on the variables. Successive
Overrelaxation is an efficient technique for solving large systems of linear
equations and it can be adapted to solve this new optimization problem. It
can be shown that the solution of the new optimization problem would be
close to the required optimal hyperplane. This algorithm is also found to be
more efficient than SMO when the size of the training set is very large [10].

4 Connections with Statistical Learning The-
ory

In this section we briefly discuss the SVM approach from the point of view
of statistical learning theory. Unlike the rest of this chapter, here we assume
that the reader has good background in probability theory.

Consider a model of learning from examples as follows. We are given a
sample of | observations (or examples) {(z;,v:), ¢ = 1,...1} where z; € X
and y; € Y. X is called the instance space and Y is called the outcome space.
The examples are drawn in independent and identically distributed (iid) man-
ner according to a probability distribution P(z,y) on X x ). However, we
do not know this probability distribution. We have a learning machine that
is capable of implementing a set of parameterized functions, from X to ),
denoted by F = {f(z,a), a € A}. The learning problem is to find the best
approximator from F for the relationship between x; and y; using the given
sample of 7#d examples. We are given a loss function L(y, f(z,a)) which is
a measure of discrepancy between the output of the approximator with pa-
rameter « and the true or desired output y for an instance z. Define a risk
functional on the parameter set A which is the expectation of loss as

R() = [ L{y, /(z,0)) dP(z,y) (46)

We formally define the goal of learning as finding the function f(z, a,) where
a, minimizes the risk, R(«) over all & € A. This general framework en-
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compasses problems such as Pattern Recognition, regression estimation, and
density estimation.

Consider a 2-class PR problem. We take the instance space to be the
space in which the feature vectors take values. Thus for us, X = R". We
can take Y = {+1, —1}. We take F to be a set of indicator functions. For
example, we can have f(z,a) = O(wTz + b) with a = (w,b) € R**! and ©
is defined by: ©(v) = —1 if v < 0 and O(v) = 1 otherwise. Then the set F
will be the set of hyperplane classifiers that we have considered earlier. If we
choose the so called 0-1 loss function given by

L(a,b) = 0ifa=b
= lifa#b (47)

then the risk functional is the probability of misclassification. Hence mini-
mizing R(«) amounts to finding a discriminant function that minimizes prob-
ability of misclassification.

The problem of regression estimation is also a special case of our general
framework. Suppose X = R" and Y = R. Choose the so called quadratic
loss function which is given by L(a,b) = (a — b)%. The regression estimate of
y as a function of x is given by

9(@) = [y aPyle)

where P(y|z) is the conditional distribution of y given z. If the regression
function is in the set of functions JF, then it is easy to see that the minimizer
of the risk functional would be the regression function.

In the rest of this section, we use the notation z = (z,y) (and similarly
zi = (%;,1;)) and Q(z,a) = L(y, f(z,a)). Now, the goal is to minimize the
risk functional defined by

R(a) = / Q(z,a) dP(z), a€ A. (48)

The special characteristic of learning problems is that the distribution P(z)
is unknown. Thus given any o we cannot calculate R(c). We need to find
the minimizer of risk using only the iid samples drawn according to P(z).
Almost all learning algorithms are based on the so called Empirical Risk
Minimization (ERM) principle which is explained below.
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Define another functional called empirical risk (based on [ samples) by

!

Rifa) = % 3 Qz, ). (49)

i=1

The RHS of (49) is the expectation of loss with respect to the empirical dis-
tribution determined by the [ iid samples. Since Rl(a) can be calculated for
any « from the given sample, we can try and minimize the empirical risk us-
ing some optimization technique. Under the ERM principle we approximate
the minimizer of R(c) by the minimizer of R;(c).

Let oy denote the minimizer of R, (defined by (49)) and let o, denote the
minimizer of R (defined by (48). For the ERM principle to be effective we
want R(oq) — R(a,) and Ry(cy) = R(e,) in probability as | — oo. (Note
that R, and q; are random because they depend on the iid samples given).
Since we do not know the probability distribution P(z), we want the above
convergence to hold no matter what this probability distribution is.

Suppose our loss function is bounded in the sense that for some constants
A, B,

A< /Q(z,a) dP(z) < B, Ya € A

for all probability distributions P(z). Then, to ensure convergence of R;(a;)
and R(oy) to R(w,) as specified earlier, it is necessary and sufficient that
Ry(e) = R(a) as | — oo uniformly over o € A. It may be noted here that
whether or not this uniform convergence holds is dependent on the chosen set
of functions F, which determines the capability or capacity of our learning
machine. A necessary and sufficient condition for this uniform convergence to
hold is that a ‘size’ parameter that we can associate with the set of functions
F, to be called VC dimension® of F, is finite.

Let F = {f(z,a), a € A} be a set of indicator functions. That is,
each of the functions takes only two values, say, +1 and —1. We define the
VC dimension of F as follows. A finite set B = {z1,...2,} C X is said
to be shattered by F if given any C' C B, we can find a o € A such that
flz,a) =+1ifz € C and f(z,a) = —1 if x € B — C. What this means is
the following. B is shattered if for every arbitrary assignment of class labels
to elements of B, there is a function in F which realizes this classification
of elements of B. The VC Dimension of F is defined to be the cardinality

8This is named after Vapnik and Chervonenkis, who derived this result.
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of the largest shattered subset of X'. If arbitrarily large finite subsets can be
shattered then the VC dimension is infinite. VC dimension of F is equal to
h implies: there is at least one subset of X with h elements that is shattered;
and no subset of X with h + 1 elements is shattered. The VC dimension of
hyperplane classifiers in " (which is the example of F we considered earlier
in this section) is n + 1.

VC dimension of a set of functions (or of a learning machine capable of
implementing those functions) is a measure of the capacity of the learning
machine. In our framework, a learning machine finds one of the functions
from the set of functions, JF, that best accounts for the data of training
samples given. That is, the learning machine finds an « which minimizes
the empirical risk on the given sample. The objective of learning is to find
a function that does well (on the average) on all instances, not just the
ones in the training samples. That is, we want the minimizer of true risk.
Hence a natural question is how can we be confident that good performance
(by the classifier) on the training data translates into good performance on
all the other unseen patterns. This is the issue of whether the learning
machine is able to achieve proper generalization based on the given data.
Often, in practice, we keep a separate sample of patterns, called test set,
and assess the performance of the classifier (learnt using the training set)
on the test set. The framework described above gives us some theoretical
guidelines on assessing the generalization capabilities of classifiers. Higher
VC dimension would mean that, unless we have a correspondingly larger
number of examples, we cannot hope for the learning machine to be able to
do proper generalization from the given data. This informal understanding
can be stated rigorously in the form of a bound on the risk functional as in
the following theorem.

Theorem 4.1: With probability at least 1 — n, the inequality

R(a) < Ry(a) + g (1 +14/1+ @) (50)

holds simultaneously for all « (that is, for all functions in F) with

h(In(2l/h) +1) —Inn

—4
@ !

(51)
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if F is a set of indicator functions with VC dimension A < oo and
we are using a positive bounded loss function.

The remarkable thing about the bound given by (50) is that for every «,
the true risk (which depends on the unknown probability distribution P(z))
is bounded above by the empirical risk on a sample of | iid examples plus a
term that depends only on the VC dimension and the number of examples.
Since this holds for any sample of examples with any functional relationship
between x and y, it is a worst case bound. There are also other similar
bounds that can be derived. Since it is a worst case bound it may not be
useful for predicting the true risk based on the empirical risk. However, the
form of this bound is very interesting from the viewpoint judging the ability
of a learning machine in making valid generalizations from the data.

The first term on the RHS of (50) is empirical risk. So, for the function
learnt by the machine this tells how well the best function from F approx-
imates the data. We can call this the data error. The second term, to be
called the generalization error, increases with increasing values of the ratio
(h/l). For a given number of examples, with higher h we get higher gener-
alization error. With a set of functions F of higher VC dimension we can
more closely approximate many different data sets and hence lower data error
does not necessarily mean lower value of true risk. (A simple but extreme
example of this is: with a data of a hundred pairs of real numbers we can
get zero data error by fitting a hundredth degree polynomial but it is very
unlikely that this polynomial correctly captures the underlying functional re-
lationship). Thus, to obtain a low value of true risk we should strive to find
a set of functions with ‘low enough’ VC dimension using which we can get
‘low enough’ data error. The bound given by (50) gives us some theoretical
guidelines for effecting a tradeoff between the quality of approximation (in
terms of error on the specific data set) and the complexity of the chosen class
of functions (in terms of VC dimension of the set F). These ideas gave rise
to the so called structural risk minimization (SRM) principle under which
one looks for methods which, along with minimizing the value of empirical
risk, control the VC dimension of the learning machine.

Now, we discuss the relevance of these ideas to Support Vector machines.
The support vector machines are found to be very effective in learning good
classifiers in many practical applications. At first sight this is very surpris-
ing. As mentioned earlier, the VC dimension of hyperplane classifiers in
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n-dimensional space is n 4+ 1. The nonlinear SVMs try to find a separating
hyperplane in a very high dimensional space. With patterns in R" if we

use a polynomial kernel with degree p, the feature space will have dimension
(n+p—1)!
p! (n—1)!
is thus very high, we do not expect to learn (in this space) a hyperplane clas-

sifier with good generalization abilities unless we can have correspondingly

which can be very large even with modest p. Since the VC dimension

larger number of training points. Hence the question is why are SVMs found
to be very effective. A good partial answer to this question is provided by
theorem 4.2 below.

Definition: A hyperplane in R™ given by wlz + b = 0 with
llw|| =1, is called a A-margin separating hyperplane if it classi-
fies vectors = as follows

y = 1lif wa+b>A
= —lifwz+b<A (52)

The classification of vectors z for which w”z +b falls in (—A, A)
is undefined ( and such patterns are not counted while evaluating
the errors made by any classifier in this class).

Theorem 4.2: Let all vectors x belong to a sphere of radius p.
Then the set of A-margin separating hyperplanes has VC dimen-

h < min ([2—21 : n> +1, (53)

where [y] denotes the smallest integer greater than y.
The class of classifiers learnt by SVMs are essentially A-margin separat-

sion bounded by

ing hyperplanes. (It is easy to see that if we divide the inequalities in (3)
by ||w||, then we get the classifier in (52). Thus, the A in (52) is essentially
same as what we called the margin of the separating hyperplane). Suppose
that, through the use of kernel function we mapped the pattern vectors into
a high dimensional feature space where we were able to find a separating hy-
perplane with good margin. Then, though the feature space may be very high
dimensional, the VC dimension of the effective class of functions in which we
are searching could be much smaller. We can think of the SVM method as
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follows. Suppose we arrange F, the set of all hyperplane classifiers into a
nested sequence of subsets: F; C F, C ... F where the i** subset contains
all hyperplanes with ||w|| < ¢; for some increasing sequence of real num-
bers ¢;. If we think of searching for best A-margin separating hyperplanes
in each of these subsets then this sequence of subsets will have decreasing
VC dimension. The SVM method, in finding the highest margin separating
hyperplane, is essentially searching for the subset of F with least VC dimen-
sion and in this subset it is finding a function with zero data error. Thus,
the SVM method is using the bound given by (50) in a very novel manner.
Operating under the constraint of keeping the data error zero, the method is
minimizing the generalization error by searching for a subclass of functions
with least VC dimension. This is the idea of Structural Risk Minimization.
All these comments apply only to the case where we can find an optimal
separating hyperplane. However, in a general SVM method we use a penalty
term in the objective function. In this general case, based on the parameter
C, the method finds a good tradeoff between data error and generalization
error. This seems to be the reason why SVM classifiers are found to be very
effective in applications.

5 Discussion

In this chapter, we described the Support Vector Machine (SVM) method
as an efficient algorithm for learning nonlinear discriminant functions in PR
problems. The basic idea is as follows. When the patterns are linearly separa-
ble, the optimal hyperplane (i.e., the separating hyperplane with maximum
margin) has very good generalization capabilities. When patterns are not
linearly separable (which is the case most often), we can map the patterns
into a very high dimensional space ‘H through a suitable nonlinear transform
¢ and find the optimal hyperplane in 4. By the use of kernel functions,
we do not need to ever explicitly construct ¢ or work in H. (As a matter
of fact, 1 can be infinite-dimensional). Also, by using a penalizing term in
the objective function, we can take care of the case where the transformed
patterns in ‘H also may not be linearly separable.

This basic idea can be used in many other learning problems as well. In
this section we briefly outline this for the case of nonlinear regression. Then
we comment on how this idea can be exploited in other problems also.
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Regression problem is closely related to the PR problem. Here we are
given examples {(z;,v;),i = 1,...,l} with z; € " and y € R. We want to
find the ‘best’ functional relationship between x and y. We search in some
parameterized class of functions g(x, W), where W is the parameter vector,
for the best function. In case of linear regression, we take g(z,w,b) = wTz+b
and the parameter vector, W, here contains w € R™ and b € R. If we need
to use a nonlinear approximator, then, using the SVM idea, we can choose
the structure of our approximator as g(z,w, b) = wl¢(x) + b where w € R™,
be R and ¢ : R® — R™ is a suitable nonlinear transformation. This is the
structure we consider here. We find the best parameters w, b by minimizing
EL(y, g(x,w,b)) where L is a suitable loss function. One loss function that is
interesting from the point of view of SVM method is the so called e-insensitive
loss function defined by

L(y, g(z,w,b)) = 0 if |y — g(z,w,b)| < e
= |y —g(z,w,b)| —e otherwise. (54)

Now (in analogy with SVM method for PR) we can minimize the expected
loss as follows: Find w, b, &;, & to solve the following optimization problem.

1 1
min inw +CY (&+€)
=1

subject to yi —wio(m) —b<e+ &, i=1,...,1
wip(z) +b—y; <e+ &, i=1,...,1
£>0,i=1,...,1
€>0,i=1,...,1 (55)

The dual of this problem is

l

max Y il — ) = €3 (b = 3 B (= i) — 1) 0006l

=1 =1 3,j=1
subject to 0 < pi, iy <C, Vi
!
=1
Once again the dual is a QP problem with one equality constraint and bound

constraints on variables, and the training samples appear only as inner prod-
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ucts. We can replace ¢(z;)¢(z;) by K(z;,z;) where K is a suitable ker-
nel function. By solving (56) we obtain the optimal Lagrange multipliers,
wip, i=1,...,1. Then the solution of (55), w*, is given by

l
wh= 3" (i - 1) B(5).

Here, the support vectors are those z; for which we have u; = ,u;*. Thus our
optimal approximation for y as a function of z is given by

!
g(LL‘, w*> b*) = Z (:u;k - N;*)K(xh .CL‘) + b*.
i=1

(As in the case of PR problem, we can obtain b* also in terms of the op-
timal Lagrange multipliers and the kernel function). Thus, by using kernel
functions, we can efficiently solve the nonlinear regression problem without
ever explicitly constructing ¢ or working in the high dimensional range space
of ¢. As in the case of PR problems, it may be noted that if we have used
Gaussian kernel, then, this method can efficiently learn an approximating
function in the form of a RBF network.

We can sum up the SVM methodology as follows. We have data vectors,
iy ¢ =1,...,1, with x; € R". We can map the data into a high dimensional
space ‘H using a suitable nonlinear transformation ¢ so that now the data is
(¢(x;),y;). (Here, y; € {—1,+1} for PR problems, y; € R for regression and
so on). In the high dimensional space we can hope to find a simple (meaning
linear) classifier or regression function. Statistical learning theory tells us
that, normally, if we want to learn a high dimensional parameter vector we
need correspondingly larger number of examples to be able to learn properly.
However, structural risk minimization framework gives us a handle to learn
a classifier or regressor with small enough generalization error. Further, if
the resulting optimization problem has the right structure (that is, if the
data vectors appear only as inner products), then by clever use of kernel
functions we can completely avoid working in the space H. We can do all
our computations efficiently in ™ though we are effectively finding a linear
classifier in the high dimensional space H.

The utility of kernel functions is that we can implicitly compute inner
products (in the space H) without even knowing the transformation ¢ and
thus never working in the space H. This would imply that any algorithm that
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uses only inner products can be recast so that we are actually transforming
the data into a very high dimensional space and using the same method there.
Thus kernel functions allow us to elegantly construct nonlinear versions of
many linear algorithms [17]. For example, we are able to learn a nonlinear
discriminant function using an algorithm which is computationally as efficient
as finding a linear discriminant function.

This idea of kernel functions can be used in many other learning problems
also. Consider a nearest neighbour classifier where one needs to find distance
between the test pattern and the stored prototypes. Since distances can be
computed as inner products, we can effectively find distance in a transformed
space using kernel functions. Such a thing is often done in a nearest neigh-
bour classifier. For example, using a Gaussian kernel would amount to using
Mahalonobis distance which is a popular choice in nearest neighbour classi-
fiers. Another example which is more interesting is the so called Fisher linear
discriminant in pattern recognition. Here one is interested in finding a linear
projection of the feature vector so that the separation between the classes
is maximized. Using kernel functions one can find a good nonlinear pro-
jection without incurring any significant additional computational overhead.
In a similar way one can use kernel functions to reformulate the principal
component analysis problem to obtain a good nonlinear transformation for
dimensionality reduction [17].

As said in the introduction, the SVM method grew out of the research in
statistical learning theory, mainly from the work of Vapnik and his associates,
starting from late sixties. The SVM algorithm was first proposed in [3]
and was later generalized in [4]. The SVM algorithm resulted in the best
performing classifier for the US Zip code data (see the description in [5]) and
generated a lot of interest in the method. The tutorial by Burgess[6] provides
a very good introduction to SVMs. It also contains a number of references
to applications. The book by Cherkaasky and Muller [7] is a good source for
related material. The QP problem that needs to be solved to obtain the SVM
classifier, has also been a subject of much interest. One of the first algorithms
that exploited the chunking idea is the so called SVM-light algorithm due
to Joachim [8]. The code for this algorithm is freely downloadable from the
net. The SMO algorithm is due to Platt [9] and it is faster than SVM-light
on most problems, often by a factor of 4. The other two algorithms briefly
mentioned in section 3 are from [11] and [10]. Algorithms such as SVM-light
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and SMO rely on decomposing a large quadratic programming problem into
a series of low dimensional problems. Theoretical analysis of such methods
can be found in [12, 13]. We have presented the SVM method as a 2-class
pattern classification technique and have briefly indicated how we can use a
number of SVMs for solving a multiclass problems. A good discussion of the
available design choices for multiclass problems can be found in [14, 15]. A
good tutorial on support vector regression is downloadable from www.kernel-
machines.org/papers/tr-30-1998.ps.gz. The book by Vapnik[5] provides an
excellent overview of statistical learning theory. More rigorous accounts of
the theory and its relevance to different learning techniques is available in [20,
21]. The recent paper by Vapnik [22] provides a good summary of relevant
results. The theorems quoted in Section 4 are all taken from this paper.
The basic result regarding uniform convergence of empirical expectations
using the idea of what is now called the VC dimension, is proved in [23].
The VC theory has given rise to much interest in studying complexity of
learning algorithms and the so called Probably Approximately Correct (PAC)
learning model (see, e.g., [24, 25]). Some discussion of the SVM method in
the context of related ideas from statistics can be found in [26] and [27]. A
good discussion on kernel-based learning algorithms is in [17, 18, 16]. The
paper [17] also gives references to a large number of recent applications. Some
of the applications of SVM in PR problems can be found in [28]-[31]. A good
source for information on various applications of SVM method is the web
site: www.clopinet.com/isabelle/Projects/SVM/applist.html. Another good
source for information various issues on kernel based learning algorithms is
the web site www.kernel-machines.org. This site contains many tutorials that
can be downloaded and it also provides some sets of data for benchmarking
learning algorithms. A very good list of all publications related to this area
is found in www.kernel-machines.org/publications.html.
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Appendix

In this appendix we state some results from optimization theory which
are used in developing the SVM algorithm. This material follows[32].
Consider the following constrained optimization problem.
min f(x)
ajrx

subject to <b;, j=1,...,r, (57)

where f : " — R is a convex function and a; € R", b; € R, Vj. Any point
x € R" that satisfies the constraints, a]Tx <b;, j=1,...,r, is said to be
feasible for (57). An z* € R" that is feasible and satisfies f(z*) < f(z), Vx €
R™ such that z is feasible, is called a constrained global minimum of f or a
global solution (or simply a solution) of the optimization problem given by
(57). We define the so called Lagrangian corresponding to (57) as

Liz, i) = f@) + 3 p(aTz — by) (58)

j=1
where p = [p1 ... p, )7 € R™ and p; are called the Lagrange multipliers.

Theorem 1: Let f be convex and continuously differentiable.
Then z* is a global solution of (57) if and only if z* is feasible for
(57) and there exist u}, j =1,...,r, such that

1. Vo L(z*,p*) =0
2. p; 20
3. pi(afz* —b;) =0, Vj
where VL is the gradient of L with respect to the vector . The conditions
in the above theorem are called the Kuhn Tucker conditions for the problem
(57).
Define a function, ¢ : R” — [—o00,00), called the dual function for (57),
by
q(p) = infy L(z, p) (59)

where L is the Lagrangian. (¢(u) may take value —oo if the infimum is not
attained).
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Now the dual (or the dual optimization problem) for (57) is defined to be
the optimization problem

max  q(p)
subject to pi >0, 5=1,...,r (60)

The optimization problem given by (57) is called the primal problem. The
following theorem establishes the relationship between the solutions of the
primal and dual problems.

Theorem 2:
a. If the primal problem has optimal solution then so does the

dual and the corresponding optimal values are equal.

b. In order for z* to be optimal primal solution and p* to be
optimal dual solution, it is necessary and sufficient that z*
is feasible for the primal problem, y* is feasible for the dual
problem and

f(z*) = L(z*, u*) = min, L(z, u*). (61)

Since (61) demands f(z*) = L(z*, u*), and since z* is feasible for (57), from
(58), we must have

,u;f(ajra:*—bj)zo, j=1,...,r

which is called complementary slackness condition. Also, we must have z*
as the unconstrained minimum of L(z, *) which means z* is a solution of
V. L(z, ) = 0 at p = p*. These are the conditions we have used in deriving
the SVM algorithm in section 2.
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