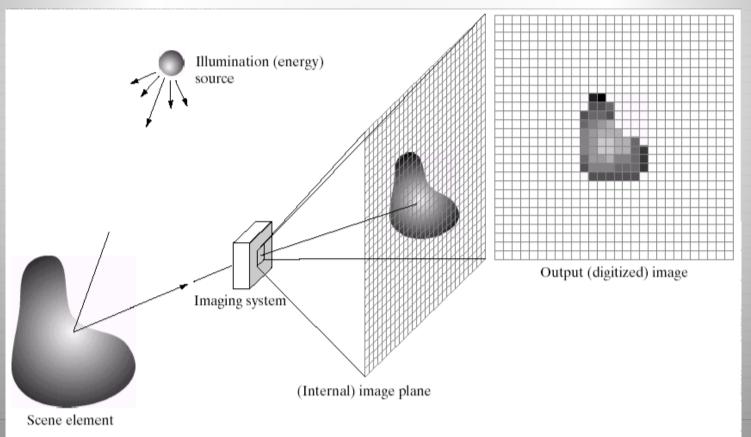
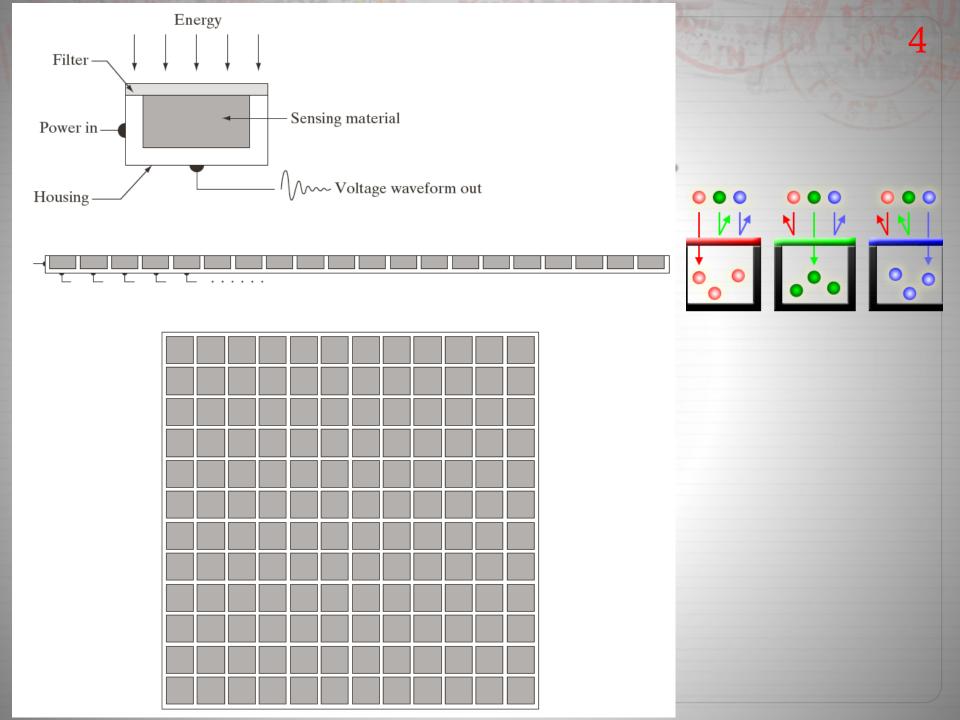
Machine Learning


Introduction to Image Processing

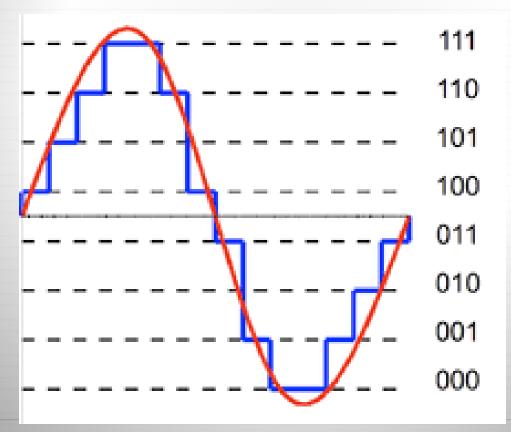

Content

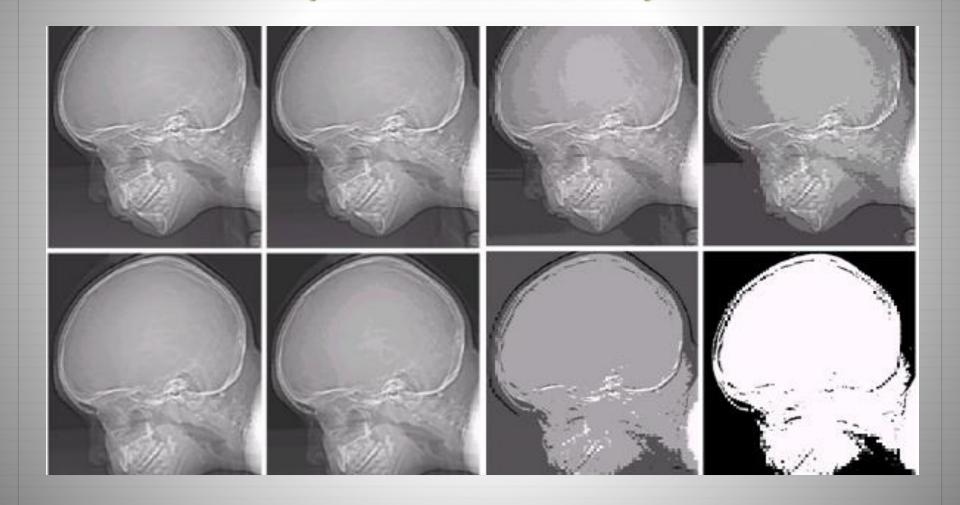
- ✤ Image Formation
- Processing Digital Images
 - Applications
 - Three levels of processing images
- ✤ Basic Spatial Operations
- ✤ Image Filtering
 - Low-pass filtering
 - High-pass filtering
- Convolution
 - + Filtering as convolutional operation

Image Formation

Image formation is the process of measuring the intensity of the reflected light by a group of sensors

Sampling


- * Each sensor on the image plane measures the intensity of the light, hitting its surface during time Δt .
- ✤ This is the same as sampling a signal at a point of time


Quantization

6

The values measured by each sensor are quantized to a predefined range (generally 0-255)

Quantization Levels

Digital Image

- Digital Image therefore, is a two-dimensional matrix of intensity values measured by the camera sensors.
- Each element of this matrix is called a picture element or a pixel.
- ✤ The matrix itself is called pixel map or pixmap

Digital Image

100	1000			1000
	1	_		
100				
	-	100	- 6	
100	1		100	
			111_	
	1.11			111
			111	1.11
200	1.0		100	100
			22523	201

187	101	324	.568	160	112	129	101	132	341	155	314
185	182	161	76	-15	-	10	17	118	210	180	254
180	140	-	14	34		30	38	-	144	155	361
204	114		134	101	111	120	204	184	15	-	185
194		132	281	237	239	239	228	217	67	n	201
172	108	207	233	239	214	220	239	238		76	394
188		179	309	185	215	311	158	1.09	-	20	168
188		166		10	168	124	11	- 10	-	22	148
199	168	181	115	168	227	178	141	182	1.		190
205	174	188	382	336	231	149	178	338	48		234
190	216	228	149	236	187		158		38	218	341
199	224	147	14	337	210	347	144	.16	an.	255	224
190	214	172		122	143		80	2	188	249	218
187	196	236		۱	•	-	0		217	198	211
182	202	237	145	٠		12	-	200	138	343	236
195	206	125	207	177	125	121	206	115	10		218

197	163	174	168	160	152	129	167	172	341	165	196
185	182	162	74	75	42	33	17	110	210	180	354
180	180	50	14	34		38		40	106	198	1#1
206	109	1	124	131	111	120	204	166	15	56	180
194	68	137	251	237	229	219	228	227	67	n	201
172	305	207	293	233	214	230	239	238	-	74	276
188		129	209	185	215	211	158	139	75	20	169
189	87	165	84	18	168	134	n	33	42	22	148
199	168	191	198	168	227	128	143	182	106	36	590
205	174	185	252	236	231	149	178	228	4	95	234
190	216	116	148	236	147	*	360	79		218	361
190	224	147	308	227	210	137	108	н	101	295	224
190	214	173	66	102	142	96	50	1	109	248	215
187	196	235	75	1		47	0		217	295	211
183	202	237	145	٠	.0	12	308	200	136	243	296
196	206	123	207	177	121	123	200	175	18	94	218

Image Processing

1()

- Digital image processing refers to manipulating images to:
 - Improve the quality of visual information for human interpretation
 - Example: Improving image contrast
 - Processing of image data for storage, transmission, or processing by machines
 - Example: Determining region of interest
 - + Extracting information about the content of the image
 - ✤ Examples: License plate detection/reading

Image Processing

Original Image

Image Processing

Improved Image

11

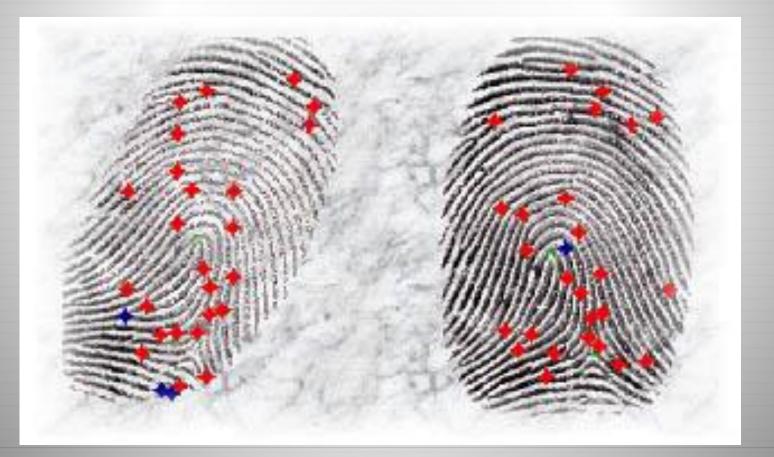
Original Image Image Processing Information

Image Processing Levels

- ✤ Images can be processed in three different levels
 - Low level: In this level a pixel and its neighbors are considered for processing
 - Examples: Noise removal, Edge detection, Smoothing

Image Processing Levels

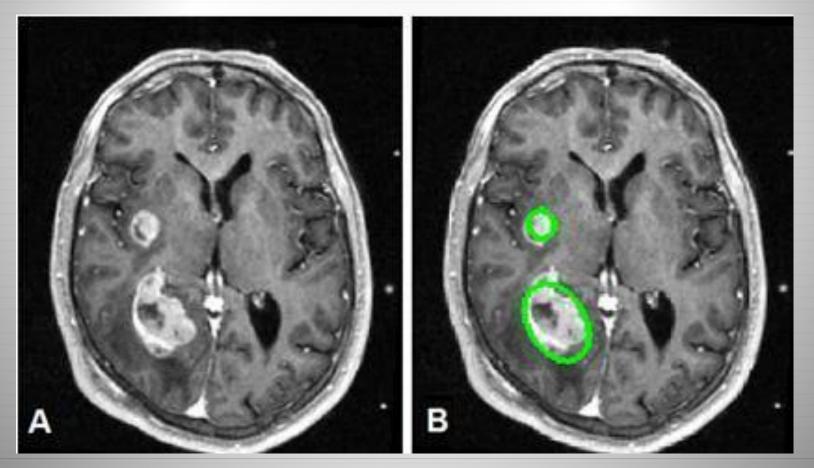
- Mid-level: In this level the results of low-level image processing is used to detect objects.
- ✤ Examples: Segmentation, Face detection


Image Processing Levels

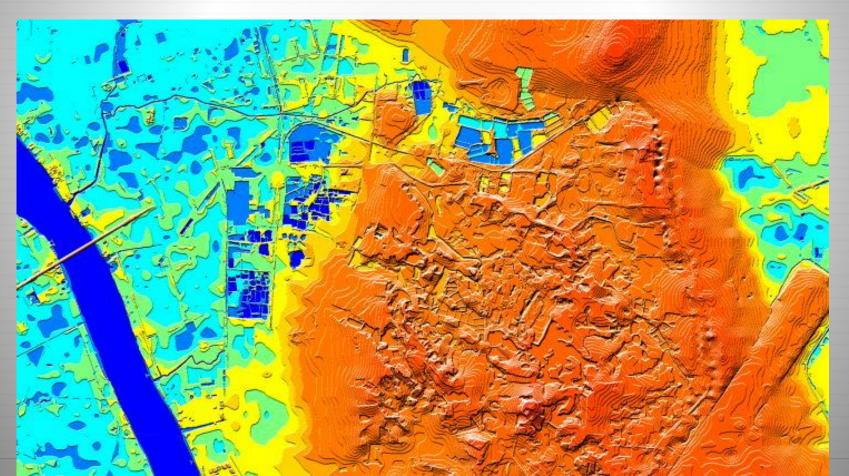
- High-level: In this level the results of mid-level processing is used to identify objects, and describe scenes.
- Examples: Face identification, Human activity description

15

Fingerprint Detection/Identification


16

✤ License Plate Reading


17

Processing Medical Images

18

Remote Sensing (Satellite Image Processing)

Spatial Operations on Images

- Spatial operations are operations that are performed on a pixel and its neighbors.
- ✤ For example,
 - by comparing a pixel with its neighbors we can decide if it is on the boundary of an object or not.
 - Thresholding is another important spatial operation.

Manipulating Pixels

- ✤ A color digital image is 3-dimensional numeric array.
- The first index (x axis) and the second (y axis) are coordinate of the pixel, and the third index is the color (Red, Green, Blue)
- Therefore, each element can be modified using its row and column indexes.
 - Example: Image[120,300,1]=35

Example

21

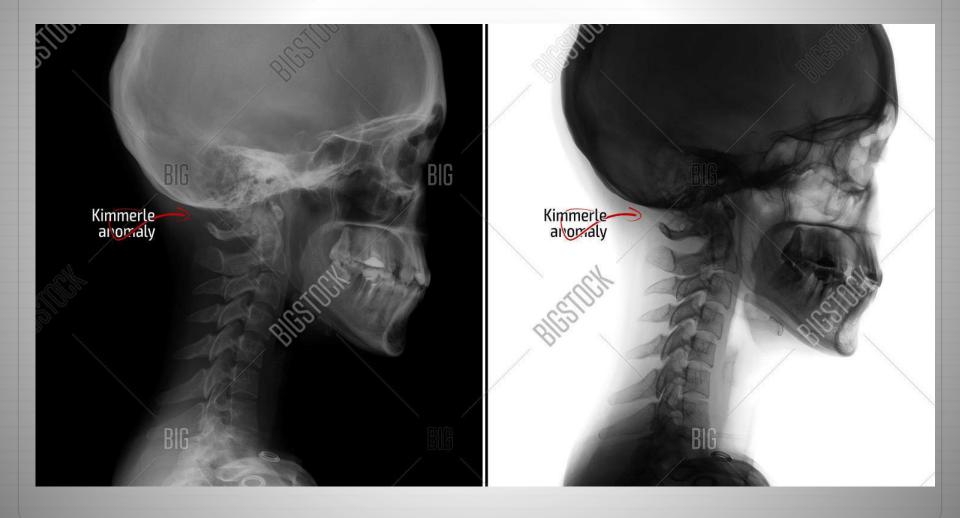
Pseudo-coloring images can make important parts better visible.

Repeat intensity value to create an image with three channels (Red, Green, Blue channels)

Example (cont.)

- If the intensity of a pixel in gray image is between x1 and x2, change its color to Red in color image.
 - if Image1[i, j] > x1 and Image1[i, j] < x2 :
 - ✤ Image2[i,j,1] = 255
 - Image2[i,j,2] = 0
 - $\Rightarrow \text{ Image2[i,j,3]} = 0$

else :

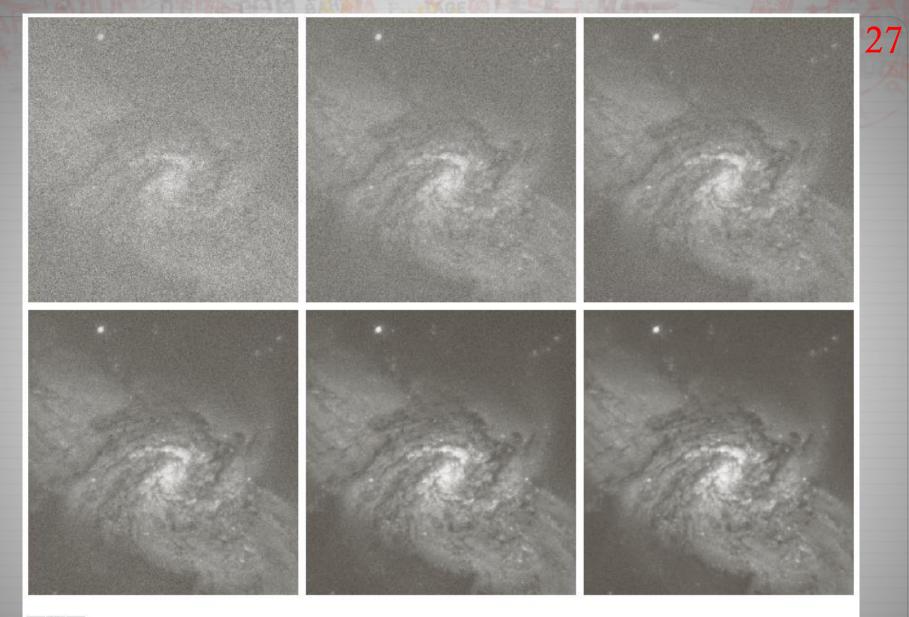

Image Negation

73

In gray images, a white object in a black/gray background is better visible than a black object in a white background.

This fact motivated radiologists to use negative images instead of the original ones

Image Negation


Image Negation

- In gray images with 256 quantization levels, 0 is considered as black, and 255 as white.
- ♦ Other values correspond to gray shades.
- Therefore, assuming x is the pixel value, 255-x is its negation.
 - NegImage = 255 Image

Image Averaging

- ✤ Assume we have *n* noisy images of the same scene.
- As noise is randomly affects pixels, each image has noise at different pixels.
- Therefore, average of these images will reduce the noise affect.

NoiseReducedImage =
$$\frac{1}{n} \sum_{i} NoisyImage_{i}$$

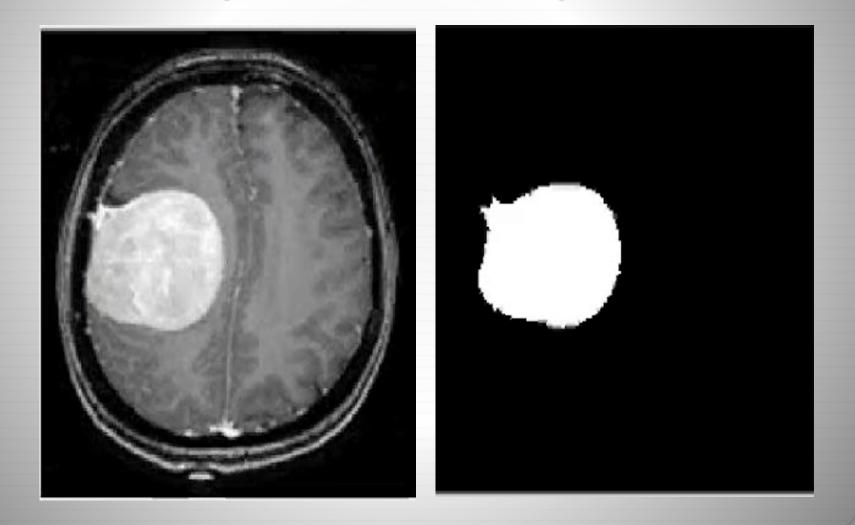

abc def

FIGURE 2.26 (a) Image of Galaxy Pair NGC 3314 corrupted by additive Gaussian noise. (b)–(f) Results of averaging 5, 10, 20, 50, and 100 noisy images, respectively. (Original image courtesy of NASA.)

Thresholding

- Assume we want to replace all pixels brighter than T with white, and all other pixels with black.
- This operation is called thresholding, and T is called threshold value.
- \Rightarrow if Image[x,y] > T :
 - Timage[x,y] = 255
- ♦ else:
 - + Timage[x,y] = 0

Thresholding

Smoothing

Smoothing is used to eliminate noise

The (weighted) average of the neighbor pixel values is used in place of a pixel to remove noise.

Smoothing is also called mean filtering

Smoothing

Original

Mean filter

Edge Detection

- Edge detection is used to find the boundaries of objects
- If we assume the area of an object has a uniform intensity, the edge pixels are pixels that are different than their neighbors.
- ♦ Algorithm:
 - Compare each pixel with its neighbors
 - + If the difference is larger than a threshold then
 - ✤ It is an edge pixel

Edge Detection

Original Image

Edge Image

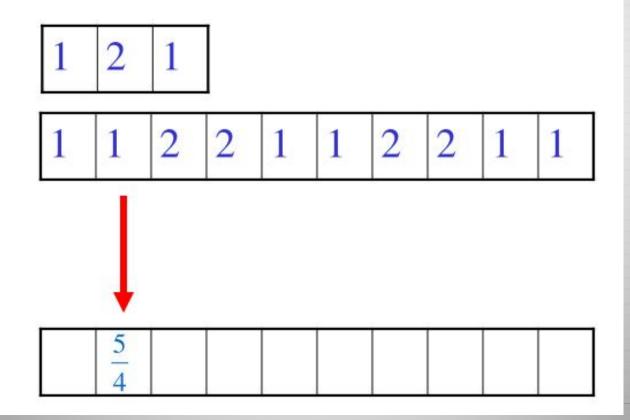
Image Filtering

- Most of the spatial operations on images can be defined using filters.
- A filter is a matrix with weights at its different positions.
- The weight values are multiplied by the pixel values, and are added up to define the new value of the pixel under the center of the filter

Sample Image Filter

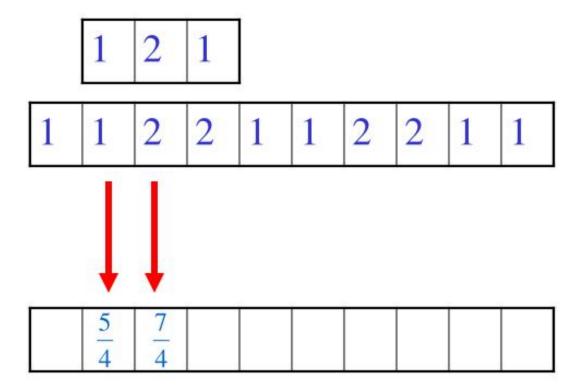
35

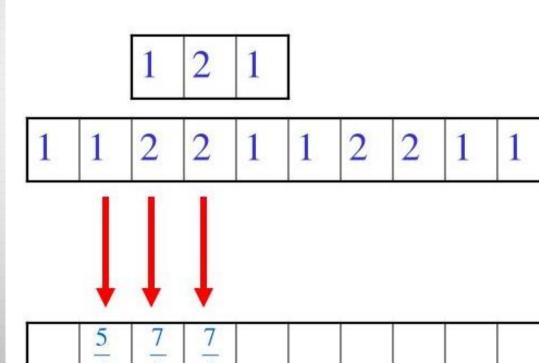
A filter with its weights


[2	1	3]
4	1	5
L3	2	2

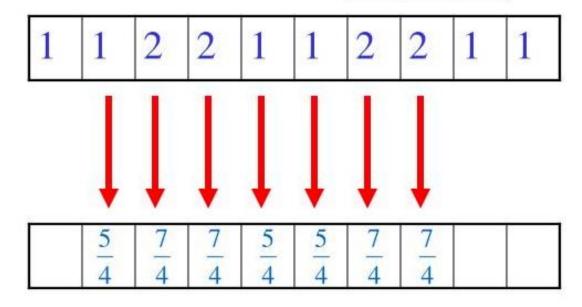
Convolution

- Filtering of an image is carried out by an operation called *convolution*.
- Convolution is a neighborhood operation, in which, each output pixel is the weighted sum of neighboring input pixels.
- The matrix of weights is called the *convolution kernel*, also known as the *filter*.


Convolution


Convolution

Convolution



For example, suppose the image is

23 5 7 14

4 6 13 20

12 19

1 8

25 2

21

15

16

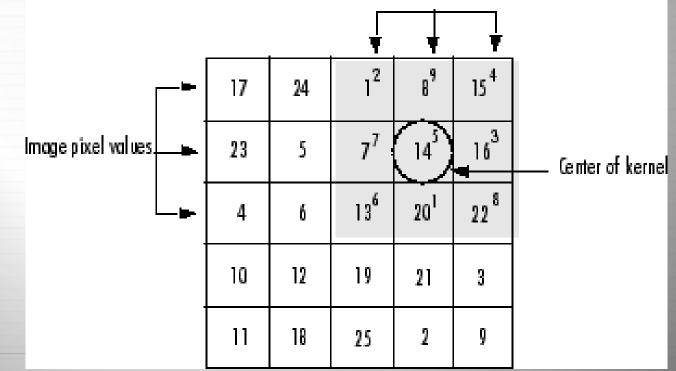
22

3

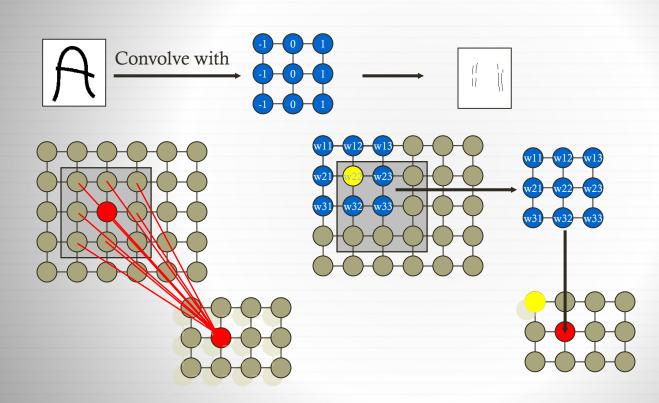
9

24

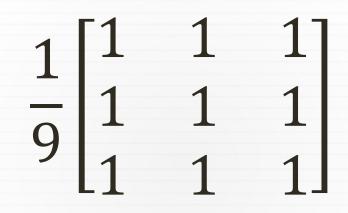
18


17

10


A =

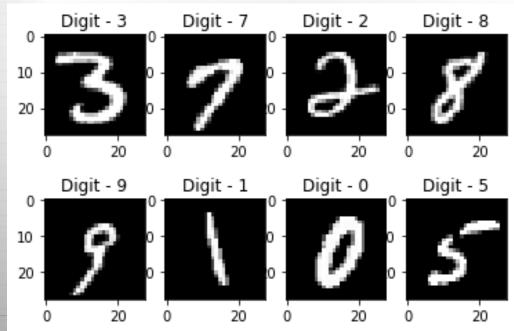
and the filter is $h = \begin{bmatrix} 2 & 9 & 4 \\ 7 & 5 & 3 \\ 6 & 1 & 8 \end{bmatrix}$


Values of rotated convolution kernel

Convolution in 2-D Images⁴²

Smoothing Filter

Gaussian Smoothing Filter


Gaussian smoothing filter assigns different weights to the neighbors of the pixel at the center.

Summary

- Digital Images are 2-dimensional matrices created by measuring the intensity of the reflected light.
- Image processing is: using algorithms to change the image matrix to improve its quality and/or extract information
- Many image processing algorithms can be defined using filters
- Applying filters to images is done by an operation called convolution

Assignment

- MNIST dataset includes handwritten digits in gray images of 28x28 (single channel images).
- The dataset has 70000 samples (60000 training and 10000 testing samples).

Assignment

- The aim of the assignment is developing a neural network in Python using keras and tensorflow to identify the digits.
- ✤ Try training with different epochs (20,30,50)
- ✤ Use L1 and L2 regularizations and discuss their impact
- In a subset of randomly selected 200 images, apply 3 pixels shift. Can the network identify them correctly (do not train your model again!)