
Machine Learning

Classification using Neural Networks

1

Content

 Linear Classifiers

 Perceptron

 Training

 Limitations

 Multilayer Perceptron

 Cost function

 Training with Backpropagation

 Generalization

 Early stopping

 Regularization

2

Linear Classifier

 A linear classifier divides the feature space

into two parts

 A linear classifier is a linear combination

of features as:

𝑤1𝑥1 +𝑤2𝑥2+…+𝑤𝑛𝑥𝑛 + b = f(x)

3

Linear Classifiers

 If f(X) > 0 the sample is from class 1

 Else, it is from class 2

 The linear classifier can be visualized as:

4

X W1

X W2

x1

x2

+ > 0 ?

b

Yes

No

Class 1

Class 2

Linear Classifier Model

 The model can be simplified as:

 This model is called Perceptron

5

Σ
x1

x2

b

0/1

W1

W2

A Linear Classifier
6

x1

x2

F(X)>0

F(X) < 0

A Linear Classifier

x1

x2

F(X)>0

7

F(X) < 0

A Linear Classifier

x1

x2

F(X)>0

F(X) < 0

8

 The summed up input, often referred to as the net

input, goes into a transfer function , which produces

the neuron (perceptron) output

 Four of the most commonly used functions are:

 hard limit transfer function

 linear transfer function

 ReLu transfer function

 log-sigmoid transfer function

Transfer Function
9

Perceptron

 Perceptron is a supervised linear classifier

 Perceptron in trained by changing its

weight values

 To train Perceptron, we compare actual

output (a) with true output (t)

10

Perceptron Learning

Repeat over training data

 If t=1 and a=0 then

wnew = wold + p, bnew = bold + 1

 If t=0 and a=1 then

wnew = wold – p, bnew = bold – 1

 If t=a then wnew = wold

11

Perceptron Learning

 Learning continues until all data samples

are tested.

 This is called one epoch.

 Training stops if

 Weights do not change in an epoch, OR

 We have reached to the upper limit of epochs

12

Limitations

 If the classes are not linearly separable, Perceptron will

fail to classify them.

 Example of non-linearly separable data is XOR function

13

0

0

1

1

X1

X2

Solution for XOR

 To classify XOR data we can use two perceptron

classifiers.

14

0

0

1

1

X1

X2

XOR Classifiers

Σ
x1

b

W1

W2

Σ
x2

b

W1

W2

Σ

b

0/1

W1

W2

15

Multi-Perceptron Classifier
16

Multi-Layer Perceptron
17

Learning Algorithm

 In training multilayer perceptron, an error term
is defined as the square of the difference
between the actual output and the true output.

 Next, the impact of each parameter change on
minimizing the error is found (using Gradient)

 Finally, the parameters are updated with a scale
called learning rate.

 This algorithm is called backpropagation

18

Learning Example

 Let’s consider a very simple neural network with

two neurons. The transfer function is Linear Transfer

 The network has only one input.

 The parameters are w1, b1, w2, b2

19

Σ Σ x
w1

b1 b2

w2
a

Learning Example

 The cost function is: 𝑐𝑜𝑠𝑡 = (𝑡 − 𝑎)2

 The network output is 𝑎 = 𝑥𝑤1 + 𝑏1 𝑤2 + 𝑏2

 Partial derivative of cost with respect to w1 is

𝜕𝑐𝑜𝑠𝑡

𝜕𝑤1
= 2 𝑡 − 𝑥𝑤1 + 𝑏1 𝑤2 + 𝑏2 𝑥𝑤2

 This shows the amount of change of w1 given sample x

 Same calculations should be done for w2, b1, and b2

20

Learning Rate

 To change the weight parameters, we multiply

the Gradient by a scale value called learning

rate.

 Learning rate adjusts our step size in

approaching the minimum.

 A small step size will make learning slow

 With a big step size, we may skip over a global

minimum

21

When to Update the

Weights?

 There are three options is updating the weights:

 1- After finding the gradient for each sample

 2- At the end of an epoch (using the average of

their gradients)

 3- After testing a group (batch) of samples (using

the average of their gradients)

22

When to Update the

Weights?

 These methods are called:

 Stochastic Gradient Descent. Update after 1 sample

 Batch Gradient Descent. Update after all training samples

 Mini-Batch Gradient Descent. 1 < Batch Size < Size of

Training Set

23

 The data set is divided into Training and Test sets.

 After the network has been trained, we will compute the

errors that the trained network makes using test set.

 keep in mind.

 The test set must never be used to train the neural

network. The test set should only be used when the

training is complete.

 Second, the test set must include all situations for which

the network will be used.

Training and Testing Data

Sets

24

Optimizations

 Neural Networks do not work well in all cases

 Among the problems that they face is overfitting

 The neural network should be optimized to

avoid these problems.

25

 A classifier is modeled as:

at=g(xt|θ)

 Function g(.) is estimated using training data

 But the training data is a (generally small) subset of

real data, coming from the application.

 Therefore, we want to know if we can generalize

the classifier, so that it performs well with any data

Generalization
26

 If a model such as g(.) perfectly matches

training data points, while performs poorly

with other data, we say it overfits the data.

 (Here, we assume the number of data points is limited)

Overfitting
27

Overfitting
28

 The key strategy for obtaining good
generalization is to find the simplest model that
explains the data.

 The idea is that the more complexity you have in
your model, the greater the possibility for errors.

 In terms of neural networks, the simplest model
is the one, that contains the smallest number of
parameters (weights and biases), or, the smallest
number of neurons.

Generalization
29

 There are (at least) four different

approaches to produce simple networks:

 growing,

 pruning,

 regularization,

 early stopping.

Generalization
30

 Growing methods start with no neurons in the

network and then add neurons until the

performance is sufficient.

 Since the network grows gradually, the

minimum number of required parameters can be

found

Growing
31

 Pruning methods start with large networks,

which likely overfit, and then remove neurons

(or weights) one at a time, until the performance

degrades significantly.

 Pruning methods are opposite of growing

methods.

 The main problem with both growing and

pruning methods is, how to grow/prune the

network.

Pruning
32

 As training progresses, the network uses more and more

of its weights, until all weights are fully used when

training reaches a minimum error.

 By increasing the number of iterations of training, we

are increasing the complexity of the resulting network.

 If training is stopped before the minimum error is

reached, then the network will effectively use fewer

parameters and will be less likely to overfit

Early Stopping
33

 Use a validation set to decide when to stop.

 The available data (after removing the test set) is divided
into two parts: a training set and a validation set.

 The training set is used to determine the weight update at
each iteration.

 The validation set is to measure the error during the
training process.

 When the error on the validation set goes up for several
iterations, the training is stopped.

 The weights that produced the minimum error on the
validation set, are used as the final trained network
weights

When to Stop?
34

35

 K-fold cross validation is performed using the following steps:

 Partition the original training data set into k equal subsets. Each

subset is called a fold. Let the folds be named as f1, f2, …, fk .

 For i = 1 to k

 Keep the fold fi as Validation set and use all the remaining k-1 folds

as training set.

 Train the model using the training set and calculate the accuracy

of the model using the validation set.

 Estimate the accuracy of your machine learning model by

averaging the accuracies derived in all the k cases of cross

validation.

K-Fold Cross Validation
36

 In Regularization method, we modify the sum

squared error to include a term that reduces

network complexity.

 This regularization term can be written as the

sum of squares of the network weights (called L2

regularization).

Regularization

F x = β𝐸𝐷 + 𝛼𝐸𝑊 = 𝛽

𝑖=1

𝑄

(𝑡𝑖 − 𝑎𝑖)
2 + 𝛼

𝑖=1

𝑛

𝑤𝑖
2

37

 The ratio α/β controls the effective

complexity of the network.

 The larger this ratio is, the smoother the

model curve.

Controlling Complexity
38

39

Summary

 Neural networks are one of the most popular methods in

machine learning

 We can use single layer or multi-layer neural networks

 We use training and testing data for learning

 The most important problem in neural networks is overfitting

 When the network is less complex, the probability of

overfitting is smaller

 As the solution, early stopping or regularization are mainly

used

40

Research Assignment

 L2 regularization adds sum squared of weights

to the cost function.

 We have the option of adding sum of the

absolute values of the weights to the cost

function.

 This regularization is called L1 regularization

 Discuss the differences between L1 and L2 and

how they affect the structure of neural networks

Due date: December 20, 2020

41

Question?

42

