
Machine Learning

Classification using Neural Networks
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Linear Classifier

 A linear classifier divides the feature space 

into two parts

 A linear classifier is a linear combination 

of  features as:

𝑤1𝑥1 +𝑤2𝑥2+…+𝑤𝑛𝑥𝑛 + b = f(x)
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Linear Classifiers

 If  f(X) > 0 the sample is from class 1

 Else, it is from class 2

 The linear classifier can be visualized as:
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Linear Classifier Model

 The model can be simplified as:

 This model is called Perceptron
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A Linear Classifier
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 The summed up input, often referred to as the net 

input, goes into a transfer function , which produces 

the neuron (perceptron) output 

 Four of  the most commonly used functions are:

 hard limit transfer function

 linear transfer function

 ReLu transfer function

 log-sigmoid transfer function

Transfer Function
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Perceptron

 Perceptron is a supervised linear classifier

 Perceptron in trained by changing its 

weight values

 To train Perceptron, we compare actual 

output (a) with true output (t) 
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Perceptron Learning 

Repeat over training data

 If  t=1 and a=0 then 

wnew = wold + p,   bnew = bold + 1

 If  t=0 and a=1 then 

wnew = wold – p,   bnew = bold – 1

 If  t=a then wnew = wold
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Perceptron Learning 

 Learning continues until all data samples 

are tested.

 This is called one epoch.

 Training stops if

 Weights do not change in an epoch, OR

 We have reached to the upper limit of  epochs
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Limitations

 If  the classes are not linearly separable, Perceptron will 

fail to classify them.

 Example of  non-linearly separable data is XOR function
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Solution for XOR

 To classify XOR data we can use two perceptron 

classifiers.
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XOR Classifiers
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Multi-Perceptron Classifier
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Multi-Layer Perceptron
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Learning Algorithm

 In training multilayer perceptron, an error term 
is defined as the square of  the difference 
between the actual output and the true output.

 Next, the impact of  each parameter change on 
minimizing the error is found (using Gradient)

 Finally, the parameters are updated with a scale 
called learning rate.

 This algorithm is called backpropagation
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Learning Example 

 Let’s consider a very simple neural network with 

two neurons. The transfer function is Linear Transfer

 The network has only one input.

 The parameters are w1, b1, w2, b2
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Learning Example 

 The cost function is:  𝑐𝑜𝑠𝑡 = (𝑡 − 𝑎)2

 The network output is 𝑎 = 𝑥𝑤1 + 𝑏1 𝑤2 + 𝑏2

 Partial derivative of  cost with respect to w1 is

𝜕𝑐𝑜𝑠𝑡

𝜕𝑤1
= 2 𝑡 − 𝑥𝑤1 + 𝑏1 𝑤2 + 𝑏2 𝑥𝑤2

 This shows the amount of  change of  w1 given sample x

 Same calculations should be done for w2, b1, and b2
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Learning Rate

 To change the weight parameters, we multiply 

the Gradient by a scale value called learning 

rate.

 Learning rate adjusts our step size in 

approaching the minimum.

 A small step size will make learning slow

 With a big step size, we may skip over a global 

minimum
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When to Update the 

Weights?

 There are three options is updating the weights:

 1- After finding the gradient for each sample

 2- At the end of  an epoch (using the average of  

their gradients)

 3- After testing a group (batch) of  samples (using 

the average of  their gradients)
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When to Update the 

Weights?

 These methods are called: 

 Stochastic Gradient Descent. Update after 1 sample

 Batch Gradient Descent. Update after all training samples

 Mini-Batch Gradient Descent. 1 < Batch Size < Size of  

Training Set
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 The data set is divided into Training and Test sets.

 After the network has been trained, we will compute the 

errors that the trained network makes using test set. 

 keep in mind. 

 The test set must never be used to train the neural 

network. The test set should only be used when the 

training is complete. 

 Second, the test set must include all situations for which 

the network will be used.

Training and Testing Data 

Sets
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Optimizations

 Neural Networks do not work well in all cases

 Among the problems that they face is overfitting

 The neural network should be optimized to 

avoid these problems.
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 A classifier is modeled as:

at=g(xt|θ) 

 Function g(.) is estimated using training data

 But the training data is a (generally small) subset of  

real data, coming from the application.

 Therefore, we want to know if  we can generalize 

the classifier, so that it performs well with any data

Generalization
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 If  a model such as g(.) perfectly matches 

training data points, while performs poorly 

with other data, we say it overfits the data.

 (Here, we assume the number of  data points is limited)  

Overfitting
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Overfitting
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 The key strategy for obtaining good 
generalization is to find the simplest model that 
explains the data. 

 The idea is that the more complexity you have in 
your model, the greater the possibility for errors.

 In terms of  neural networks, the simplest model 
is the one, that contains the smallest number of  
parameters (weights and biases), or, the smallest 
number of  neurons. 

Generalization
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 There are (at least) four different 

approaches to produce simple networks: 

 growing, 

 pruning, 

 regularization,

 early stopping.

Generalization
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 Growing methods start with no neurons in the 

network and then add neurons until the 

performance is sufficient.

 Since the network grows gradually, the 

minimum number of  required parameters can be 

found

Growing
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 Pruning methods start with large networks, 

which likely overfit, and then remove neurons 

(or weights) one at a time, until the performance 

degrades significantly.

 Pruning methods are opposite of  growing 

methods.

 The main problem with both growing and 

pruning methods is, how to grow/prune the 

network.

Pruning
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 As training progresses, the network uses more and more 

of  its weights, until all weights are fully used when 

training reaches a minimum error. 

 By increasing the number of  iterations of  training, we 

are increasing the complexity of  the resulting network. 

 If  training is stopped before the minimum error is 

reached, then the network will effectively use fewer 

parameters and will be less likely to overfit

Early Stopping
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 Use a validation set to decide when to stop. 

 The available data (after removing the test set) is divided 
into two parts: a training set and a validation set. 

 The training set is used to determine the weight update at 
each iteration. 

 The validation set is to measure the error during the 
training process. 

 When the error on the validation set goes up for several 
iterations, the training is stopped.

 The weights that produced the minimum error on the 
validation set, are used as the final trained network 
weights

When to Stop?
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 K-fold cross validation is performed using the following steps:

 Partition the original training data set into k equal subsets. Each 

subset is called a fold. Let the folds be named as f1, f2, …, fk .

 For i = 1 to k 

 Keep the fold fi as Validation set and use all the remaining k-1 folds 

as training set.

 Train the model using the training set and calculate the accuracy 

of  the model using the validation set.

 Estimate the accuracy of  your machine learning model by 

averaging the accuracies derived in all the k cases of  cross 

validation.

K-Fold Cross Validation
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 In Regularization method, we modify the sum 

squared error to include a term that reduces 

network complexity.

 This regularization term can be written as the 

sum of  squares of  the network weights (called L2 

regularization). 

Regularization

F x = β𝐸𝐷 + 𝛼𝐸𝑊 = 𝛽෍

𝑖=1

𝑄

(𝑡𝑖 − 𝑎𝑖)
2 + 𝛼෍

𝑖=1

𝑛

𝑤𝑖
2
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 The ratio α/β controls the effective 

complexity of  the network.

 The larger this ratio is, the smoother the 

model curve.

Controlling Complexity
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Summary

 Neural networks are one of  the most popular methods in 

machine learning

 We can use single layer or multi-layer neural networks

 We use training and testing data for learning

 The most important problem in neural networks is overfitting

 When the network is less complex, the probability of  

overfitting is smaller

 As the solution, early stopping or regularization are mainly 

used
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Research Assignment

 L2 regularization adds sum squared of  weights 

to the cost function. 

 We have the option of  adding sum of  the 

absolute values of  the weights to the cost 

function.

 This regularization is called L1 regularization

 Discuss the differences between L1 and L2 and 

how they affect the structure of  neural networks

Due date: December 20, 2020
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Question?
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