
Machine Learning

Classification using Neural Networks

1

Content

 Linear Classifiers

 Perceptron

 Training

 Limitations

 Multilayer Perceptron

 Cost function

 Training with Backpropagation

 Generalization

 Early stopping

 Regularization

2

Linear Classifier

 A linear classifier divides the feature space

into two parts

 A linear classifier is a linear combination

of features as:

𝑤1𝑥1 +𝑤2𝑥2+…+𝑤𝑛𝑥𝑛 + b = f(x)

3

Linear Classifiers

 If f(X) > 0 the sample is from class 1

 Else, it is from class 2

 The linear classifier can be visualized as:

4

X W1

X W2

x1

x2

+ > 0 ?

b

Yes

No

Class 1

Class 2

Linear Classifier Model

 The model can be simplified as:

 This model is called Perceptron

5

Σ
x1

x2

b

0/1

W1

W2

A Linear Classifier
6

x1

x2

F(X)>0

F(X) < 0

A Linear Classifier

x1

x2

F(X)>0

7

F(X) < 0

A Linear Classifier

x1

x2

F(X)>0

F(X) < 0

8

 The summed up input, often referred to as the net

input, goes into a transfer function , which produces

the neuron (perceptron) output

 Four of the most commonly used functions are:

 hard limit transfer function

 linear transfer function

 ReLu transfer function

 log-sigmoid transfer function

Transfer Function
9

Perceptron

 Perceptron is a supervised linear classifier

 Perceptron in trained by changing its

weight values

 To train Perceptron, we compare actual

output (a) with true output (t)

10

Perceptron Learning

Repeat over training data

 If t=1 and a=0 then

wnew = wold + p, bnew = bold + 1

 If t=0 and a=1 then

wnew = wold – p, bnew = bold – 1

 If t=a then wnew = wold

11

Perceptron Learning

 Learning continues until all data samples

are tested.

 This is called one epoch.

 Training stops if

 Weights do not change in an epoch, OR

 We have reached to the upper limit of epochs

12

Limitations

 If the classes are not linearly separable, Perceptron will

fail to classify them.

 Example of non-linearly separable data is XOR function

13

0

0

1

1

X1

X2

Solution for XOR

 To classify XOR data we can use two perceptron

classifiers.

14

0

0

1

1

X1

X2

XOR Classifiers

Σ
x1

b

W1

W2

Σ
x2

b

W1

W2

Σ

b

0/1

W1

W2

15

Multi-Perceptron Classifier
16

Multi-Layer Perceptron
17

Learning Algorithm

 In training multilayer perceptron, an error term
is defined as the square of the difference
between the actual output and the true output.

 Next, the impact of each parameter change on
minimizing the error is found (using Gradient)

 Finally, the parameters are updated with a scale
called learning rate.

 This algorithm is called backpropagation

18

Learning Example

 Let’s consider a very simple neural network with

two neurons. The transfer function is Linear Transfer

 The network has only one input.

 The parameters are w1, b1, w2, b2

19

Σ Σ x
w1

b1 b2

w2
a

Learning Example

 The cost function is: 𝑐𝑜𝑠𝑡 = (𝑡 − 𝑎)2

 The network output is 𝑎 = 𝑥𝑤1 + 𝑏1 𝑤2 + 𝑏2

 Partial derivative of cost with respect to w1 is

𝜕𝑐𝑜𝑠𝑡

𝜕𝑤1
= 2 𝑡 − 𝑥𝑤1 + 𝑏1 𝑤2 + 𝑏2 𝑥𝑤2

 This shows the amount of change of w1 given sample x

 Same calculations should be done for w2, b1, and b2

20

Learning Rate

 To change the weight parameters, we multiply

the Gradient by a scale value called learning

rate.

 Learning rate adjusts our step size in

approaching the minimum.

 A small step size will make learning slow

 With a big step size, we may skip over a global

minimum

21

When to Update the

Weights?

 There are three options is updating the weights:

 1- After finding the gradient for each sample

 2- At the end of an epoch (using the average of

their gradients)

 3- After testing a group (batch) of samples (using

the average of their gradients)

22

When to Update the

Weights?

 These methods are called:

 Stochastic Gradient Descent. Update after 1 sample

 Batch Gradient Descent. Update after all training samples

 Mini-Batch Gradient Descent. 1 < Batch Size < Size of

Training Set

23

 The data set is divided into Training and Test sets.

 After the network has been trained, we will compute the

errors that the trained network makes using test set.

 keep in mind.

 The test set must never be used to train the neural

network. The test set should only be used when the

training is complete.

 Second, the test set must include all situations for which

the network will be used.

Training and Testing Data

Sets

24

Optimizations

 Neural Networks do not work well in all cases

 Among the problems that they face is overfitting

 The neural network should be optimized to

avoid these problems.

25

 A classifier is modeled as:

at=g(xt|θ)

 Function g(.) is estimated using training data

 But the training data is a (generally small) subset of

real data, coming from the application.

 Therefore, we want to know if we can generalize

the classifier, so that it performs well with any data

Generalization
26

 If a model such as g(.) perfectly matches

training data points, while performs poorly

with other data, we say it overfits the data.

 (Here, we assume the number of data points is limited)

Overfitting
27

Overfitting
28

 The key strategy for obtaining good
generalization is to find the simplest model that
explains the data.

 The idea is that the more complexity you have in
your model, the greater the possibility for errors.

 In terms of neural networks, the simplest model
is the one, that contains the smallest number of
parameters (weights and biases), or, the smallest
number of neurons.

Generalization
29

 There are (at least) four different

approaches to produce simple networks:

 growing,

 pruning,

 regularization,

 early stopping.

Generalization
30

 Growing methods start with no neurons in the

network and then add neurons until the

performance is sufficient.

 Since the network grows gradually, the

minimum number of required parameters can be

found

Growing
31

 Pruning methods start with large networks,

which likely overfit, and then remove neurons

(or weights) one at a time, until the performance

degrades significantly.

 Pruning methods are opposite of growing

methods.

 The main problem with both growing and

pruning methods is, how to grow/prune the

network.

Pruning
32

 As training progresses, the network uses more and more

of its weights, until all weights are fully used when

training reaches a minimum error.

 By increasing the number of iterations of training, we

are increasing the complexity of the resulting network.

 If training is stopped before the minimum error is

reached, then the network will effectively use fewer

parameters and will be less likely to overfit

Early Stopping
33

 Use a validation set to decide when to stop.

 The available data (after removing the test set) is divided
into two parts: a training set and a validation set.

 The training set is used to determine the weight update at
each iteration.

 The validation set is to measure the error during the
training process.

 When the error on the validation set goes up for several
iterations, the training is stopped.

 The weights that produced the minimum error on the
validation set, are used as the final trained network
weights

When to Stop?
34

35

 K-fold cross validation is performed using the following steps:

 Partition the original training data set into k equal subsets. Each

subset is called a fold. Let the folds be named as f1, f2, …, fk .

 For i = 1 to k

 Keep the fold fi as Validation set and use all the remaining k-1 folds

as training set.

 Train the model using the training set and calculate the accuracy

of the model using the validation set.

 Estimate the accuracy of your machine learning model by

averaging the accuracies derived in all the k cases of cross

validation.

K-Fold Cross Validation
36

 In Regularization method, we modify the sum

squared error to include a term that reduces

network complexity.

 This regularization term can be written as the

sum of squares of the network weights (called L2

regularization).

Regularization

F x = β𝐸𝐷 + 𝛼𝐸𝑊 = 𝛽෍

𝑖=1

𝑄

(𝑡𝑖 − 𝑎𝑖)
2 + 𝛼෍

𝑖=1

𝑛

𝑤𝑖
2

37

 The ratio α/β controls the effective

complexity of the network.

 The larger this ratio is, the smoother the

model curve.

Controlling Complexity
38

39

Summary

 Neural networks are one of the most popular methods in

machine learning

 We can use single layer or multi-layer neural networks

 We use training and testing data for learning

 The most important problem in neural networks is overfitting

 When the network is less complex, the probability of

overfitting is smaller

 As the solution, early stopping or regularization are mainly

used

40

Research Assignment

 L2 regularization adds sum squared of weights

to the cost function.

 We have the option of adding sum of the

absolute values of the weights to the cost

function.

 This regularization is called L1 regularization

 Discuss the differences between L1 and L2 and

how they affect the structure of neural networks

Due date: December 20, 2020

41

Question?

42

