
Machine Learning

Classification using Neural Networks
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Linear Classifier

 A linear classifier divides the feature space 

into two parts

 A linear classifier is a linear combination 

of  features as:

𝑤1𝑥1 +𝑤2𝑥2+…+𝑤𝑛𝑥𝑛 + b = f(x)
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Linear Classifiers

 If  f(X) > 0 the sample is from class 1

 Else, it is from class 2

 The linear classifier can be visualized as:
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Linear Classifier Model

 The model can be simplified as:

 This model is called Perceptron
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A Linear Classifier
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 The summed up input, often referred to as the net 

input, goes into a transfer function , which produces 

the neuron (perceptron) output 

 Four of  the most commonly used functions are:

 hard limit transfer function

 linear transfer function

 ReLu transfer function

 log-sigmoid transfer function

Transfer Function
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Perceptron

 Perceptron is a supervised linear classifier

 Perceptron in trained by changing its 

weight values

 To train Perceptron, we compare actual 

output (a) with true output (t) 
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Perceptron Learning 

Repeat over training data

 If  t=1 and a=0 then 

wnew = wold + p,   bnew = bold + 1

 If  t=0 and a=1 then 

wnew = wold – p,   bnew = bold – 1

 If  t=a then wnew = wold
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Perceptron Learning 

 Learning continues until all data samples 

are tested.

 This is called one epoch.

 Training stops if

 Weights do not change in an epoch, OR

 We have reached to the upper limit of  epochs
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Limitations

 If  the classes are not linearly separable, Perceptron will 

fail to classify them.

 Example of  non-linearly separable data is XOR function
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Solution for XOR

 To classify XOR data we can use two perceptron 

classifiers.
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XOR Classifiers
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Multi-Perceptron Classifier
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Multi-Layer Perceptron
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Learning Algorithm

 In training multilayer perceptron, an error term 
is defined as the square of  the difference 
between the actual output and the true output.

 Next, the impact of  each parameter change on 
minimizing the error is found (using Gradient)

 Finally, the parameters are updated with a scale 
called learning rate.

 This algorithm is called backpropagation
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Learning Example 

 Let’s consider a very simple neural network with 

two neurons. The transfer function is Linear Transfer

 The network has only one input.

 The parameters are w1, b1, w2, b2
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Learning Example 

 The cost function is:  𝑐𝑜𝑠𝑡 = (𝑡 − 𝑎)2

 The network output is 𝑎 = 𝑥𝑤1 + 𝑏1 𝑤2 + 𝑏2

 Partial derivative of  cost with respect to w1 is

𝜕𝑐𝑜𝑠𝑡

𝜕𝑤1
= 2 𝑡 − 𝑥𝑤1 + 𝑏1 𝑤2 + 𝑏2 𝑥𝑤2

 This shows the amount of  change of  w1 given sample x

 Same calculations should be done for w2, b1, and b2
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Learning Rate

 To change the weight parameters, we multiply 

the Gradient by a scale value called learning 

rate.

 Learning rate adjusts our step size in 

approaching the minimum.

 A small step size will make learning slow

 With a big step size, we may skip over a global 

minimum
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When to Update the 

Weights?

 There are three options is updating the weights:

 1- After finding the gradient for each sample

 2- At the end of  an epoch (using the average of  

their gradients)

 3- After testing a group (batch) of  samples (using 

the average of  their gradients)

22



When to Update the 

Weights?

 These methods are called: 

 Stochastic Gradient Descent. Update after 1 sample

 Batch Gradient Descent. Update after all training samples

 Mini-Batch Gradient Descent. 1 < Batch Size < Size of  

Training Set
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 The data set is divided into Training and Test sets.

 After the network has been trained, we will compute the 

errors that the trained network makes using test set. 

 keep in mind. 

 The test set must never be used to train the neural 

network. The test set should only be used when the 

training is complete. 

 Second, the test set must include all situations for which 

the network will be used.

Training and Testing Data 

Sets
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Optimizations

 Neural Networks do not work well in all cases

 Among the problems that they face is overfitting

 The neural network should be optimized to 

avoid these problems.
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 A classifier is modeled as:

at=g(xt|θ) 

 Function g(.) is estimated using training data

 But the training data is a (generally small) subset of  

real data, coming from the application.

 Therefore, we want to know if  we can generalize 

the classifier, so that it performs well with any data

Generalization
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 If  a model such as g(.) perfectly matches 

training data points, while performs poorly 

with other data, we say it overfits the data.

 (Here, we assume the number of  data points is limited)  

Overfitting
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Overfitting
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 The key strategy for obtaining good 
generalization is to find the simplest model that 
explains the data. 

 The idea is that the more complexity you have in 
your model, the greater the possibility for errors.

 In terms of  neural networks, the simplest model 
is the one, that contains the smallest number of  
parameters (weights and biases), or, the smallest 
number of  neurons. 

Generalization
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 There are (at least) four different 

approaches to produce simple networks: 

 growing, 

 pruning, 

 regularization,

 early stopping.

Generalization
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 Growing methods start with no neurons in the 

network and then add neurons until the 

performance is sufficient.

 Since the network grows gradually, the 

minimum number of  required parameters can be 

found

Growing
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 Pruning methods start with large networks, 

which likely overfit, and then remove neurons 

(or weights) one at a time, until the performance 

degrades significantly.

 Pruning methods are opposite of  growing 

methods.

 The main problem with both growing and 

pruning methods is, how to grow/prune the 

network.

Pruning
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 As training progresses, the network uses more and more 

of  its weights, until all weights are fully used when 

training reaches a minimum error. 

 By increasing the number of  iterations of  training, we 

are increasing the complexity of  the resulting network. 

 If  training is stopped before the minimum error is 

reached, then the network will effectively use fewer 

parameters and will be less likely to overfit

Early Stopping
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 Use a validation set to decide when to stop. 

 The available data (after removing the test set) is divided 
into two parts: a training set and a validation set. 

 The training set is used to determine the weight update at 
each iteration. 

 The validation set is to measure the error during the 
training process. 

 When the error on the validation set goes up for several 
iterations, the training is stopped.

 The weights that produced the minimum error on the 
validation set, are used as the final trained network 
weights

When to Stop?
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 K-fold cross validation is performed using the following steps:

 Partition the original training data set into k equal subsets. Each 

subset is called a fold. Let the folds be named as f1, f2, …, fk .

 For i = 1 to k 

 Keep the fold fi as Validation set and use all the remaining k-1 folds 

as training set.

 Train the model using the training set and calculate the accuracy 

of  the model using the validation set.

 Estimate the accuracy of  your machine learning model by 

averaging the accuracies derived in all the k cases of  cross 

validation.

K-Fold Cross Validation
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 In Regularization method, we modify the sum 

squared error to include a term that reduces 

network complexity.

 This regularization term can be written as the 

sum of  squares of  the network weights (called L2 

regularization). 

Regularization

F x = β𝐸𝐷 + 𝛼𝐸𝑊 = 𝛽

𝑖=1

𝑄

(𝑡𝑖 − 𝑎𝑖)
2 + 𝛼

𝑖=1

𝑛

𝑤𝑖
2
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 The ratio α/β controls the effective 

complexity of  the network.

 The larger this ratio is, the smoother the 

model curve.

Controlling Complexity
38
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Summary

 Neural networks are one of  the most popular methods in 

machine learning

 We can use single layer or multi-layer neural networks

 We use training and testing data for learning

 The most important problem in neural networks is overfitting

 When the network is less complex, the probability of  

overfitting is smaller

 As the solution, early stopping or regularization are mainly 

used
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Research Assignment

 L2 regularization adds sum squared of  weights 

to the cost function. 

 We have the option of  adding sum of  the 

absolute values of  the weights to the cost 

function.

 This regularization is called L1 regularization

 Discuss the differences between L1 and L2 and 

how they affect the structure of  neural networks

Due date: December 20, 2020
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Question?
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