Machine Learning

1

Classification using Neural Networks

Content

- Linear Classifiers
	- Perceptron
	- **Training**
	- Limitations
- Multilayer Perceptron
	- Cost function
	- Training with Backpropagation
- Generalization
	- Early stopping
	- Regularization

Linear Classifier

3

 A linear classifier divides the feature space into two parts

 A linear classifier is a linear combination of features as:

 $w_1 x_1 + w_2 x_2 + \ldots + w_n x_n + b = f(x)$

Linear Classifiers

4

 \div If f(X) > 0 the sample is from class 1

 \triangle Else, it is from class 2

The linear classifier can be visualized as:

Linear Classifier Model

5

The model can be simplified as:

 \triangleleft This model is called **Perceptron**

A Linear Classifier

A Linear Classifier

A Linear Classifier

Transfer Function

- The summed up input, often referred to as the *net input*, goes into a *transfer function* , which produces the neuron (perceptron) output
- Four of the most commonly used functions are:
	- *hard limit transfer function*
	- *linear transfer function*
	- *ReLu transfer function*
	- *log-sigmoid transfer function*

 \mathbf{O}

Perceptron

- Perceptron is a supervised linear classifier
- \triangle Perceptron in trained by changing its weight values
- To train Perceptron, we compare actual output (a) with true output (t)

Perceptron Learning

11

Repeat over training data If $t=1$ and $a=0$ then $w_{new} = w_{old} + p$, $b_{new} = b_{old} + 1$ If $t=0$ and $a=1$ then $w_{new} = w_{old} - p$, $b_{new} = b_{old} - 1$ If t=a then $w_{new} = w_{old}$

Perceptron Learning

- Learning continues until all data samples are tested.
- This is called one epoch.
- \triangle Training stops if
	- Weights do not change in an epoch, OR
	- We have reached to the upper limit of epochs

Limitations

- If the classes are not linearly separable, Perceptron will fail to classify them.
- Example of non-linearly separable data is XOR function

Solution for XOR

 To classify XOR data we can use two perceptron classifiers.

XOR Classifiers

Multi-Perceptron Classifier 16

Multi-Layer Perceptron

Learning Algorithm

- \triangleq In training multilayer perceptron, an error term is defined as the square of the difference between the actual output and the true output.
- Next, the impact of each parameter change on minimizing the error is found (using Gradient)
- \triangle Finally, the parameters are updated with a scale called *learning rate.*
- This algorithm is called *backpropagation*

Learning Example

- Let's consider a very simple neural network with two neurons. The transfer function is *Linear Transfer*
- The network has only one input.
- \triangleleft The parameters are w_1 , b_1 , w_2 , b_2

Learning Example

20

- \triangleleft The cost function is: $cost = (t a)^2$
- \div The network output is $a = (xw_1 + b_1)w_2 + b_2$
- \triangleleft Partial derivative of cost with respect to w₁ is

$$
\frac{\partial \cos t}{\partial w_1} = 2\left(t - \left((xw_1 + b_1)w_2 + b_2\right)\right) xw_2
$$

 \triangleleft This shows the amount of change of w₁ given sample x

 \triangleleft Same calculations should be done for w_2 , b_1 , and b_2

Learning Rate

- \triangle To change the weight parameters, we multiply the Gradient by a scale value called learning rate.
- Learning rate adjusts our step size in approaching the minimum.
- \triangle A small step size will make learning slow
- With a big step size, we may skip over a global minimum

When to Update the Weights? 22

- \triangle There are three options is updating the weights:
- *1-* After finding the gradient for each sample
- *2-* At the end of an epoch (using the average of their gradients)
- *3-* After testing a group (batch) of samples (using the average of their gradients)

When to Update the Weights? 23

These methods are called:

- Stochastic Gradient Descent. *Update after 1 sample*
- Batch Gradient Descent. *Update after all training samples*
- Mini-Batch Gradient Descent. *1 < Batch Size < Size of Training Set*

Training and Testing Data Sets 24

- \triangle The data set is divided into **Training** and **Test** sets.
- \triangle After the network has been trained, we will compute the errors that the trained network makes using *test set*.
- \triangleleft keep in mind.
	- The test set must never be used to train the neural network. The test set should only be used when the training is complete.
	- Second, the test set must include all situations for which the network will be used.

Optimizations

25

Neural Networks do not work well in all cases

 \triangle Among the problems that they face is overfitting

 The neural network should be optimized to avoid these problems.

Generalization

26

A classifier is modeled as:

 $a^t = g(x^t | \theta)$

- \triangle Function g(.) is estimated using training data
- \triangle But the training data is a (generally small) subset of real data, coming from the application.
- \triangle Therefore, we want to know if we can generalize the classifier, so that it performs well with any data

Overfitting

27

 \div If a model such as g(.) perfectly matches training data points, while performs poorly with other data, we say it overfits the data.

 \triangleleft (Here, we assume the number of data points is limited)

Overfitting

Generalization

- The key strategy for obtaining good generalization is to find the simplest model that explains the data.
- \triangle The idea is that the more complexity you have in your model, the greater the possibility for errors.
- \triangleq In terms of neural networks, the simplest model is the one, that contains the smallest number of parameters (weights and biases), or, the smallest number of neurons.

Generalization

30

 There are (at least) four different approaches to produce simple networks:

growing,

pruning,

regularization,

early stopping.

Growing

31

 Growing methods start with no neurons in the network and then add neurons until the performance is sufficient.

 \triangle Since the network grows gradually, the minimum number of required parameters can be found

Pruning

- \triangle Pruning methods start with large networks, which likely overfit, and then remove neurons (or weights) one at a time, until the performance degrades significantly.
- \triangle Pruning methods are opposite of growing methods.
- The main problem with both growing and pruning methods is, how to grow/prune the network.

Early Stopping

- \triangle As training progresses, the network uses more and more of its weights, until all weights are fully used when training reaches a minimum error.
- \triangleleft By increasing the number of iterations of training, we are increasing the complexity of the resulting network.
- \triangle If training is stopped before the minimum error is reached, then the network will effectively use fewer parameters and will be less likely to overfit

When to Stop?

- Use a *validation set* to decide when to stop.
	- The available data (after removing the test set) is divided into two parts: a training set and a validation set.
	- The training set is used to determine the weight update at each iteration.
	- The validation set is to measure the error during the training process.
- \triangleleft When the error on the validation set goes up for several iterations, the training is stopped.
- \triangle The weights that produced the minimum error on the validation set, are used as the final trained network weights

K-Fold Cross Validation

- \triangleleft K-fold cross validation is performed using the following steps:
- \triangleleft Partition the original training data set into k equal subsets. Each subset is called a **fold**. Let the folds be named as $f_1, f_2, ..., f_k$.
- $\text{For } i = 1 \text{ to } k$
	- **Keep the fold** f_i **as Validation set and use all the remaining** $k-1$ **folds** as training set.
	- Train the model using the training set and calculate the accuracy of the model using the validation set.
- \triangleleft Estimate the accuracy of your machine learning model by averaging the accuracies derived in all the *k* cases of cross validation.

Regularization

- In *Regularization* method, we modify the sum squared error to include a term that reduces network complexity.
- \triangle This regularization term can be written as the sum of squares of the network weights (called L2 regularization).

$$
F(x) = \beta E_D + \alpha E_W = \beta \sum_{i=1}^{Q} (t_i - a_i)^2 + \alpha \sum_{i=1}^{n} w_i^2
$$

Controlling Complexity

- \triangle The ratio α/β controls the effective complexity of the network.
- The larger this ratio is, the smoother the model curve.

Summary

- \triangleleft Neural networks are one of the most popular methods in machine learning
- We can use single layer or multi-layer neural networks
- \triangleleft We use training and testing data for learning
- \triangle The most important problem in neural networks is overfitting
- \triangleleft When the network is less complex, the probability of overfitting is smaller
- \triangleleft As the solution, early stopping or regularization are mainly used

Research Assignment

41

 L2 regularization adds sum squared of weights to the cost function.

- \triangle We have the option of adding sum of the absolute values of the weights to the cost function.
- This regularization is called L1 regularization
- Discuss the differences between L1 and L2 and how they affect the structure of neural networks

Due date: December 20, 2020

